Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nickel-catalysed asymmetric hydrogenation of oximes


Chiral hydroxylamines are vital substances in bioscience and versatile subunits in the preparation of a variety of functional molecules. However, asymmetric and non-asymmetric synthetic approaches to these compounds are far from satisfactory. Although atom-economic metal-catalysed asymmetric hydrogenations have been studied for over 50 years, the asymmetric hydrogenation of oximes to the corresponding chiral hydroxylamines remains challenging because of the labile N–O bond and inert C=N bond. Here we report an environmentally friendly, earth-abundant, transition-metal nickel-catalysed asymmetric hydrogenation of oximes, affording the corresponding chiral hydroxylamines with up to 99% yield, 99% e.e. and with a substrate/catalyst ratio of 1,000. Computational results indicate that the weak interactions between the catalyst and substrate play crucial roles not only in the transition states, but also during the approach of the substrate to the catalyst, by selectively reducing the reaction barriers and thus improving the reaction efficiency and securing the generation of chirality.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Reduction of oximes to chiral hydroxylamines.
Fig. 2: Synthetic applications.
Fig. 3: Theoretical calculations of the approach of the substrate to the catalyst.
Fig. 4: Computed mechanism.

Data availability

The data supporting the findings of this study are available within the Article and its Supplementary Information. For the experimental procedures, data for the NMR and HPLC analyses and cartesian coordinates of the optimized structures, see the Supplementary Methods in the Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition nos. CCDC 2059388 (1a) and 2059391 (2a). Copies of the data can be obtained free of charge via


  1. Rappoport, Z. & Lebman, J. F. The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids (Wiley-VCH, 2008).

  2. Pattabiraman, V. R. & Bode, J. W. Rethinking amide bond synthesis. Nature 480, 471–479 (2011).

    CAS  PubMed  Article  Google Scholar 

  3. Tan, K. L. Temporary intramolecularity. Nat. Chem. 4, 253–254 (2012).

    CAS  PubMed  Article  Google Scholar 

  4. Paudyal, M. P. et al. Dirhodium-catalyzed C-H arene amination using hydroxylamines. Science 353, 1144–1147 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Tang, W. & Zhang, X. New chiral phosphorus ligands for enantioselective hydrogenation. Chem. Rev. 103, 3029–3069 (2003).

    CAS  PubMed  Article  Google Scholar 

  6. Johnson, N. B., Lennon, I. C., Moran, P. H. & Ramsden, J. A. Industrial-scale synthesis and applications of asymmetric hydrogenation catalysts. Acc. Chem. Res. 40, 1291–1299 (2007).

    CAS  PubMed  Article  Google Scholar 

  7. Xie, J.-H., Zhu, S.-F. & Zhou, Q.-L. Transition metal-catalyzed enantioselective hydrogenation of enamines and imines. Chem. Rev. 111, 1713–1760 (2011).

    CAS  PubMed  Article  Google Scholar 

  8. Chen, Q.-A., Ye, Z.-S., Duan, Y. & Zhou, Y.-G. Homogeneous palladium-catalyzed asymmetric hydrogenation. Chem. Soc. Rev. 42, 497–511 (2013).

    CAS  PubMed  Article  Google Scholar 

  9. Zhang, Z., Butt, N. A. & Zhang, W. Asymmetric hydrogenation of nonaromatic cyclic substrates. Chem. Rev. 116, 14769–14827 (2016).

    CAS  PubMed  Article  Google Scholar 

  10. Seo, C. S. G. & Morris, R. H. Catalytic homogeneous asymmetric hydrogenation: successes and opportunities. Organometallics 38, 47–65 (2019).

    CAS  Article  Google Scholar 

  11. Maj, A. M., Suisse, I. & Agbossou-Niedercorn, F. Asymmetric hydrogenation of 2,3-dihydro-1H-inden-1-one oxime and derivatives. Tetrahedron Asymmetry 27, 268–273 (2016).

    CAS  Article  Google Scholar 

  12. Huang, K., Li, S., Chang, M. & Zhang, X. Rhodium-catalyzed enantioselective hydrogenation of oxime acetates. Org. Lett. 15, 484–487 (2013).

    CAS  PubMed  Article  Google Scholar 

  13. Krasik, P. & Alper, H. The ruthenium catalyzed asymmetric hydrogenation of oximes using binap as the chiral ligand. Tetrahedron Asymmetry 3, 1283–1288 (1992).

    CAS  Article  Google Scholar 

  14. Xie, Y., Mi, A., Jiang, Y. & Liu, H. Enantioselective hydrogenation of ketone oxime catalyzed by Ir-DPAMPP complex. Synth. Commun. 31, 2767–2771 (2001).

    CAS  Article  Google Scholar 

  15. Knowles, W. S. & Sabacky, M. J. Catalytic asymmetric hydrogenation employing a soluble, optically active, rhodium complex. Chem. Commun. 1968, 1445–1446 (1968).

    Google Scholar 

  16. Knowles, W. S. Asymmetric hydrogenations (Nobel Lecture). Angew. Chem. Int. Ed. 41, 1998–2007 (2002).

    CAS  Article  Google Scholar 

  17. Noyori, R. Asymmetric catalysis: science and opportunities (Nobel Lecture). Angew. Chem. Int. Ed. 41, 2008–2022 (2002).

    CAS  Article  Google Scholar 

  18. Bolotin, D. S., Bokach, N. A., Demakova, M. Y. & Kukushkin, V. Y. Metal-involving synthesis and reactions of oximes. Chem. Rev. 117, 13039–13122 (2017).

    CAS  PubMed  Article  Google Scholar 

  19. Chu, Y., Shan, Z., Liu, D. & Sun, N. Asymmetric reduction of oxime ethers promoted by chiral spiroborate esters with an O3BN framework. J. Org. Chem. 71, 3998–4001 (2006).

    CAS  PubMed  Article  Google Scholar 

  20. Huang, X. et al. Asymmetric synthesis of primary amines via the spiroborate-catalyzed borane reduction of oxime ethers. Org. Lett. 9, 1793–1795 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Huang, K. et al. Highly enantioselective borane reduction of heteroaryl and heterocyclic ketoxime ethers catalyzed by novel spiroborate ester derived from diphenylvalinol: application to the synthesis of nicotine analogues. J. Org. Chem. 73, 4017–4026 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Huang, K., Ortiz-Marciales, M., Stepanenko, V., Jesús, M. D. & Correa, W. A practical and efficient route for the highly enantioselective synthesis of mexiletine analogues and novel β-thiophenoxy and pyridyl ethers. J. Org. Chem. 73, 6928–6931 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Mohr, J. & Oestreich, M. B(C6F5)3-catalyzed hydrogenation of oxime ethers without cleavage of the N-O bond. Angew. Chem. Int. Ed. 53, 13278–13281 (2014).

    CAS  Article  Google Scholar 

  24. Mas-Roselló, J., Smejkal, T. & Cramer, N. Iridium-catalyzed acid-assisted asymmetric hydrogenation of oximes to hydroxylamines. Science 368, 1098–1102 (2020).

    PubMed  Article  CAS  Google Scholar 

  25. Guin, D. & Gruebele, M. Weak chemical interactions that drive protein evolution: crowding, sticking and quinary structure in folding and function. Chem. Rev. 119, 10691–10717 (2019).

    CAS  PubMed  Article  Google Scholar 

  26. Fraser, H. B., Hirsh, A. E., Steinmetz, L. M., Scharfe, C. & Feldman, M. W. Evolutionary rate in the protein interaction network. Science 296, 750–752 (2002).

    CAS  PubMed  Article  Google Scholar 

  27. Wagner, J. P. & Schreiner, P. R. London dispersion in molecular chemistry reconsidering steric effects. Angew. Chem. Int. Ed. 54, 12274–12296 (2015).

    CAS  Article  Google Scholar 

  28. Thomas, A. A. et al. Mechanistically guided design of ligands that significantly improve the efficiency of CuH-catalyzed hydroamination reactions. J. Am. Chem. Soc. 140, 13976–13984 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Ge, L. et al. Iron-catalysed asymmetric carboazidation of styrenes. Nat. Catal. 4, 28–35 (2021).

    CAS  Article  Google Scholar 

  30. Liu, C. et al. Manganese-catalyzed asymmetric hydrogenation of quinolines enabled by π-π interaction. Angew. Chem. Int. Ed. 60, 5108–5113 (2021).

    CAS  Article  Google Scholar 

  31. Chen, J. et al. Pd(OAc)2-catalyzed asymmetric hydrogenation of sterically hindered N-tosylimines. Nat. Commun. 9, 5000 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. Zhang, J. et al. Chemo- and enantioselective hydrogenation of ɑ-formyl enamides: an efficient access to chiral ɑ-amido aldehydes. Angew. Chem. Int. Ed. 58, 11505–11512 (2019).

    CAS  Article  Google Scholar 

  33. Chen, J. & Gridnev, I. D. Size is important: artificial catalyst mimics behavior of natural enzymes. iScience 23, 100960 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Li, B., Chen, J., Zhang, Z., Gridnev, I. D. & Zhang, W. Nickel-catalyzed asymmetric hydrogenation of N-sulfonyl imines. Angew. Chem. Int. Ed. 58, 7329–7334 (2019).

    CAS  Article  Google Scholar 

  35. Hu, Y. et al. Nickel-catalyzed asymmetric hydrogenation of 2-amidoacrylates. Angew. Chem. Int. Ed. 59, 5371–5375 (2020).

    CAS  Article  Google Scholar 

  36. Liu, D. et al. Ni-catalyzed asymmetric hydrogenation of N-aryl imino esters for the efficient synthesis of chiral α-aryl glycines. Nat. Commun. 11, 5935 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Hu, Y. et al. Cobalt‐catalyzed asymmetric hydrogenation of C=N bond enabled by assisted coordination and non‐bonding interaction. Angew. Chem. Int. Ed. 58, 15767–15771 (2019).

    CAS  Article  Google Scholar 

  38. Zhang, J. et al. Asymmetric hydrogenation of γ-branched allylamines for the efficient synthesis of γ-chirogenic amines. Nat. Sci. 1, e10021 (2021).

    Google Scholar 

  39. Li, Y.-Y., Yu, S.-L., Shen, W.-Y. & Gao, J.-X. Iron‑, cobalt- and nickel-catalyzed asymmetric transfer hydrogenation and asymmetric hydrogenation of ketones. Acc. Chem. Res. 48, 2587–2598 (2015).

    CAS  PubMed  Article  Google Scholar 

  40. Zhang, Z., Butt, N. A., Zhou, M., Liu, D. & Zhang, W. Asymmetric transfer and pressure hydrogenation with earth‐abundant transition metal catalysts. Chin. J. Chem. 36, 443–454 (2018).

    CAS  Article  Google Scholar 

  41. Alig, L., Fritz, M. & Schneider, S. First-row transition metal (de)hydrogenation catalysis based on functional pincer ligands. Chem. Rev. 119, 2681–2751 (2019).

    CAS  PubMed  Article  Google Scholar 

  42. Liu, Y., Dong, X.-Q. & Zhang, X. Recent advances of nickel-catalyzed homogeneous asymmetric hydrogenation. Chin. J. Org. Chem. 40, 1096–1104 (2020).

    CAS  Article  Google Scholar 

  43. Agbossou-Niedercorn, F. & Michon, C. Bifunctional homogeneous catalysts based on first row transition metals in asymmetric hydrogenation. Coordin. Chem. Rev. 425, 213523 (2020).

    CAS  Article  Google Scholar 

  44. Friedfeld, M. R. et al. Cobalt precursors for high-throughput discovery of base metal asymmetric alkene hydrogenation catalysts. Science 342, 1076–1080 (2013).

    CAS  PubMed  Article  Google Scholar 

  45. Zuo, W., Lough, A. J., Li, Y. F. & Morris, R. H. Amine(imine)diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines. Science 342, 1080–1083 (2013).

    CAS  PubMed  Article  Google Scholar 

  46. Friedfeld, M. R., Zhong, H., Ruck, R. T., Shevlin, M. & Chirik, P. J. Cobalt-catalyzed asymmetric hydrogenation of enamides enabled by single-electron reduction. Science 360, 888–893 (2018).

    CAS  PubMed  Article  Google Scholar 

Download references


We dedicate this work to Professor Tsuneo Imamoto for his 80th birthday. We thank the National Key R&D Program of China (no. 2018YFE0126800, W.Z.), National Natural Science Foundation of China (nos. 21620102003, W.Z.; 21991112, W.Z.; 21772119, J.C.; 21702134, J.C.) and Shanghai Municipal Education Commission (no. 201701070002E00030, W.Z.) for financial support. We thank the Instrumental Analysis Center of SJTU for characterization.

Author information

Authors and Affiliations



W.Z. directed the project. B.L. conducted most of the synthetic experiments. D.L. conducted some of the synthetic experiments. I.D.G. conducted the density functional theory computational study. J.C., B.L., W.Z. and I.D.G. wrote the original draft of the manuscript. J.C., W.Z., B.L. and I.D.G. reviewed and edited the manuscript.

Corresponding author

Correspondence to Wanbin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Tomas Smeijkal, Jianrong Zhou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Tables 1–8. Synthesis and characterization data, supplementary discussion, computational and procedural details, crystallographic data, NMR spectra, HPLC traces.

Supplementary Data 1

Crystallographic data for compound 1a; CCDC reference 2059388

Supplementary Data 2

Crystallographic data for compound 2a; CCDC reference 2059391

Supplementary Data 3

Contains the Cartesian coordinates of computational structures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, B., Chen, J., Liu, D. et al. Nickel-catalysed asymmetric hydrogenation of oximes. Nat. Chem. 14, 920–927 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing