Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultrafast energy transfer between π-stacked aromatic rings upon inner-valence ionization

Abstract

Non-covalently bound aromatic systems are ubiquitous and govern the physicochemical properties of various organic materials. They are important to many phenomena of biological and technological relevance, such as protein folding, base-pair stacking in nucleic acids, molecular recognition and self-assembly, DNA–drug interactions, crystal engineering and organic electronics. Nevertheless, their molecular dynamics and chemical reactivity, particularly in electronic excited states, are not fully understood. Here, we observe intermolecular Coulombic decay in benzene dimers, (C6H6)2—the simplest prototypes of noncovalent ππ interactions between aromatic systems. Intermolecular Coulombic decay is initiated by a carbon 2s vacancy state produced by electron-impact ionization and proceeds through ultrafast energy transfer between the benzene molecules. As a result, the dimer relaxes with the emission of a further low-energy electron (<10 eV) and a pair of C6H6+ cations undergoing Coulomb explosion. Coincident fragment-ion and electron momentum spectroscopy, accompanied by ab initio calculations, enables us to elucidate the dynamical details of this ultrafast relaxation process.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Schematics of ICD in the benzene dimer illustrating subsequent electronic transitions and spatial structures of the dimer.
Fig. 2: Measured correlation map between two fragment ions from (C6H6)2 dimers.
Fig. 3: KER spectra.
Fig. 4: Scattered projectile and ejected electron spectra.
Fig. 5: Fragment-ion measurements using a mixed C6H6 and C6D6 target.

Data availability

Source data are provided with this paper. The data supporting this study are also available from the corresponding author upon reasonable request.

References

  1. Hunter, C. A. & Sanders, J. K. M. The nature of π–π interactions. J. Am. Chem. Soc. 112, 5525–5534 (1990).

    CAS  Google Scholar 

  2. Řezáĉ, J. & Hobza, P. Benchmark calculations of interaction energies in noncovalent complexes and their applications. Chem. Rev. 116, 5038–5071 (2016).

    PubMed  Google Scholar 

  3. Kim, K. S., Tarakeshwar, P. & Lee, J. Y. Molecular clusters of π-systems: theoretical studies of structures, spectra, and origin of interaction energies. Chem. Rev. 100, 4145–4186 (2000).

    CAS  PubMed  Google Scholar 

  4. Chen, T., Li, M. & Liu, J. π–π Stacking interaction: a nondestructive and facile means in material engineering for bioapplications. Cryst. Growth Des. 18, 2765–2783 (2018).

    CAS  Google Scholar 

  5. Mahadevi, A. S. & Sastry, G. N. Cooperativity in noncovalent interactions. Chem. Rev. 116, 2775–2825 (2016).

    CAS  PubMed  Google Scholar 

  6. Burley, S. & Petsko, G. Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229, 23–28 (1985).

    CAS  PubMed  Google Scholar 

  7. Hunter, C. A., Singh, J. & Thornton, J. M. π–π Interactions: the geometry and energetics of phenylalanine-phenylalanine interactions in proteins. J. Mol. Biol. 218, 837–846 (1991).

    CAS  PubMed  Google Scholar 

  8. Yakovchuk, P., Protozanova, E. & Frank-Kamenetskii, M. D. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 34, 564–574 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Řezáĉ, J. & Hobza, P. On the nature of DNA-duplex stability. Chem. Eur. J. 13, 2983–2989 (2007).

    PubMed  Google Scholar 

  10. Noller, H. F. RNA structure: reading the ribosome. Science 309, 1508–1514 (2005).

    CAS  PubMed  Google Scholar 

  11. Meyer, E. A., Castellano, R. K. & Diederich, F. Interactions with aromatic rings in chemical and biological recognition. Angew. Chem. Int. Ed. 42, 1210–1250 (2003).

    CAS  Google Scholar 

  12. Philp, D. & Stoddart, J. F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. 35, 1154–1196 (1996).

    Google Scholar 

  13. Hunter, C. A. Meldola lecture. The role of aromatic interactions in molecular recognition. Chem. Soc. Rev. 23, 101–109 (1994).

    CAS  Google Scholar 

  14. Vacas, T. et al. Role of aromatic rings in the molecular recognition of aminoglycoside antibiotics: implications for drug design. J. Am. Chem. Soc. 132, 12074–12090 (2010).

    CAS  PubMed  Google Scholar 

  15. Frederick, C. A. et al. Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin. Biochemistry 29, 2538–2549 (1990).

    CAS  PubMed  Google Scholar 

  16. Desiraju, G. R. Crystal engineering: from molecule to crystal. J. Am. Chem. Soc. 135, 9952–9967 (2013).

    CAS  PubMed  Google Scholar 

  17. Figueira-Duarte, T. M. & Müllen, K. Pyrene-based materials for organic electronics. Chem. Rev. 111, 7260–7314 (2011).

    CAS  PubMed  Google Scholar 

  18. Pitoňák, M. et al. Benzene dimer: high-level wave function and density functional theory calculations. J. Chem. Theory Comput. 4, 1829–1834 (2008).

    PubMed  Google Scholar 

  19. Lee, E. C. et al. Understanding of assembly phenomena by aromatic–aromatic interactions: benzene dimer and the substituted systems. J. Phys. Chem. A 111, 3446–3457 (2007).

    CAS  PubMed  Google Scholar 

  20. Sinnokrot, M. O. & Sherrill, C. D. High-accuracy quantum mechanical studies of π–π interactions in benzene dimers. J. Phys. Chem. A 110, 10656–10668 (2006).

    CAS  PubMed  Google Scholar 

  21. Podeszwa, R., Bukowski, R. & Szalewicz, K. Potential energy surface for the benzene dimer and perturbational analysis of π–π interactions. J. Phys. Chem. A 110, 10345–10354 (2006).

    CAS  PubMed  Google Scholar 

  22. Fu, C.-F. & Tian, S. X. A comparative study for molecular dynamics simulations of liquid benzene. J. Chem. Theory Comput. 7, 2240–2252 (2011).

    CAS  PubMed  Google Scholar 

  23. Pieniazek, P. A., Krylov, A. I. & Bradforth, S. E. Electronic structure of the benzene dimer cation. J. Chem. Phys. 127, 044317 (2007).

    PubMed  Google Scholar 

  24. Sisourat, N., Kazandjian, S. & Miteva, T. Probing conformers of benzene dimer with intermolecular Coulombic decay spectroscopy. J. Phys. Chem. A 121, 45–50 (2017).

    CAS  PubMed  Google Scholar 

  25. Deleuze, M. S., Francois, J.-P. & Kryachko, E. S. The fate of dicationic states in molecular clusters of benzene and related compounds. J. Am. Chem. Soc. 127, 16824–16834 (2005).

    CAS  PubMed  Google Scholar 

  26. Kryachko, E. S. Dicationic states of benzene dimer: benzene dimer cation and benzene dication parenthood patterns. Int. J. Quantum Chem. 107, 2741–2755 (2007).

    CAS  Google Scholar 

  27. Cederbaum, L. S., Zobeley, J. & Tarantelli, F. Giant intermolecular decay and fragmentation of clusters. Phys. Rev. Lett. 79, 4778–4781 (1997).

    CAS  Google Scholar 

  28. Hergenhahn, U. Interatomic and intermolecular Coulombic decay: the early years. J. Electron Spectros. Relat. Phenomena 184, 78–90 (2011).

    CAS  Google Scholar 

  29. Kuleff, A. I. & Cederbaum, L. S. Tracing ultrafast interatomic electronic decay processes in real time and space. Phys. Rev. Lett. 98, 083201 (2007).

    PubMed  Google Scholar 

  30. Schnorr, K. et al. Time-resolved measurement of interatomic Coulombic decay in Ne2. Phys. Rev. Lett. 111, 093402 (2013).

    CAS  PubMed  Google Scholar 

  31. Trinter, F. et al. Evolution of interatomic Coulombic decay in the time domain. Phys. Rev. Lett. 111, 093401 (2013).

    CAS  PubMed  Google Scholar 

  32. Sisourat, N. et al. Ultralong-range energy transfer by interatomic Coulombic decay in an extreme quantum system. Nat. Phys. 6, 508–511 (2010).

    CAS  Google Scholar 

  33. Havermeier, T. et al. Interatomic Coulombic decay following photoionization of the helium dimer: observation of vibrational structure. Phys. Rev. Lett. 104, 133401 (2010).

    CAS  PubMed  Google Scholar 

  34. Marburger, S., Kugeler, O., Hergenhahn, U. & Möller, T. Experimental evidence for interatomic Coulombic decay in Ne clusters. Phys. Rev. Lett. 90, 203401 (2003).

    CAS  PubMed  Google Scholar 

  35. Jahnke, T. et al. Experimental observation of interatomic Coulombic decay in neon dimers. Phys. Rev. Lett. 93, 163401 (2004).

    CAS  PubMed  Google Scholar 

  36. Trinter, F. et al. Resonant Auger decay driving intermolecular Coulombic decay in molecular dimers. Nature 505, 664–666 (2014).

    CAS  PubMed  Google Scholar 

  37. O’Keeffe, P. et al. The role of the partner atom and resonant excitation energy in interatomic Coulombic decay in rare gas dimers. J. Phys. Chem. Lett. 4, 1797–1801 (2013).

    PubMed  Google Scholar 

  38. Iskandar, W. et al. Interatomic Coulombic decay as a new source of low energy electrons in slow ion-dimer collisions. Phys. Rev. Lett. 114, 033201 (2015).

    CAS  PubMed  Google Scholar 

  39. Nagaya, K. et al. Interatomic Coulombic decay cascades in multiply excited neon clusters. Nat. Commun. 7, 13477 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. LaForge, A. C. et al. Highly efficient double ionization of mixed alkali dimers by intermolecular Coulombic decay. Nat. Phys. 15, 247–250 (2019).

    CAS  Google Scholar 

  41. Obaid, R. et al. Intermolecular Coulombic decay in endohedral fullerene at the 4d → 4f resonance. Phys. Rev. Lett. 124, 113002 (2020).

    CAS  PubMed  Google Scholar 

  42. Iskandar, W. et al. Tracing intermolecular Coulombic decay of carbon-dioxide dimers and oxygen dimers after valence photoionization. Phys. Rev. A 99, 043414 (2019).

    CAS  Google Scholar 

  43. Jahnke, T. et al. Interatomic and intermolecular Coulombic decay. Chem. Rev. 120, 11295–11369 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jahnke, T. et al. Ultrafast energy transfer between water molecules. Nat. Phys. 6, 139–142 (2010).

    CAS  Google Scholar 

  45. Mucke, M. et al. A hitherto unrecognized source of low-energy electrons in water. Nat. Phys. 6, 143–146 (2010).

    CAS  Google Scholar 

  46. Thürmer, S. et al. On the nature and origin of dicationic, charge-separated species formed in liquid water on X-ray irradiation. Nat. Chem. 5, 590–596 (2013).

    PubMed  Google Scholar 

  47. Ren, X. et al. Experimental evidence for ultrafast intermolecular relaxation processes in hydrated biomolecules. Nat. Phys. 14, 1062–1066 (2018).

    CAS  Google Scholar 

  48. Stoychev, S. D., Kuleff, A. I. & Cederbaum, L. S. Intermolecular Coulombic decay in small biochemically relevant hydrogen-bonded systems. J. Am. Chem. Soc. 133, 6817–6824 (2011).

    CAS  PubMed  Google Scholar 

  49. Weikert, H.-G. & Cederbaum, L. On the satellite structure accompanying the ionization of benzene. Chem. Phys. Lett. 237, 1–6 (1995).

    CAS  Google Scholar 

  50. Baltzer, P. et al. An experimental and theoretical study of the valence shell photoelectron spectrum of the benzene molecule. Chem. Phys. 224, 95–119 (1997).

    CAS  Google Scholar 

  51. Eland, J. H. Spectra of the dications of benzene, naphthalene and azulene. Chem. Phys. 345, 82–86 (2008).

    CAS  Google Scholar 

  52. Pimblott, S. M. & LaVerne, J. A. Production of low-energy electrons by ionizing radiation. Radiat. Phys. Chem. 76, 1244–1247 (2007).

    CAS  Google Scholar 

  53. Huels, M. A., Boudaïffa, B., Cloutier, P., Hunting, D. & Sanche, L. Single, double, and multiple double strand breaks induced in DNA by 3–100 eV electrons. J. Am. Chem. Soc. 125, 4467–4477 (2003).

    CAS  PubMed  Google Scholar 

  54. Alizadeh, E., Orlando, T. M. & Sanche, L. Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA. Ann. Rev. Phys. Chem. 66, 379–398 (2015).

    CAS  Google Scholar 

  55. Ullrich, J. et al. Recoil-ion and electron momentum spectroscopy: reaction-microscopes. Rep. Prog. Phys. 66, 1463 (2003).

    CAS  Google Scholar 

  56. Ren, X., Jabbour Al Maalouf, E., Dorn, A. & Denifl, S. Direct evidence of two interatomic relaxation mechanisms in argon dimers ionized by electron impact. Nat. Commun. 7, 11093 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhou, J. et al. Real-time observation of ultrafast molecular rotation in weakly bound dimers. Phys. Rev. Res. 3, 023050 (2021).

    CAS  Google Scholar 

  58. Vendrell, O., Stoychev, S. D. & Cederbaum, L. S. Generation of highly damaging H2O+ radicals by inner valence shell ionization of water. ChemPhysChem 11, 1006–1009 (2010).

    CAS  PubMed  Google Scholar 

  59. Iachello, F. & Oss, S. Stretching vibrations of benzene in the algebraic model. Chem. Phys. Lett. 187, 500–505 (1991).

    CAS  Google Scholar 

  60. Feng, R., Cooper, G. & Brion, C. Dipole (e,e+ion) spectroscopic studies of benzene: absolute oscillator strengths for molecular and dissociative photoionization in the VUV and soft X-ray regions. J. Electron Spectrosc. Relat. Phenomena 123, 211–223 (2002).

    CAS  Google Scholar 

  61. Řezáĉ, J. & Hobza, P. Benzene dimer: dynamic structure and thermodynamics derived from on-the-fly ab initio DFT-D molecular dynamic simulations. J. Chem. Theory Comput. 4, 1835–1840 (2008).

    PubMed  Google Scholar 

  62. Erlekam, U., Frankowski, M., Meijer, G. & von Helden, G. An experimental value for the B1u C–H stretch mode in benzene. J. Chem. Phys. 124, 171101 (2006).

    PubMed  Google Scholar 

  63. Felker, P. M., Maxton, P. M. & Schaeffer, M. W. Nonlinear Raman studies of weakly bound complexes and clusters in molecular beams. Chem. Rev. 94, 1787–1805 (1994).

    CAS  Google Scholar 

  64. Gokhberg, K., Kopelke, S., Kryzhevoi, N. V., Kolorenč, P. & Cederbaum, L. S. Dependence of interatomic decay widths on the symmetry of the decaying state: analytical expressions and ab initio results. Phys. Rev. A 81, 013417 (2010).

    Google Scholar 

  65. Galbraith, M. C. E. et al. Few femtosecond passage of conical intersections in the benzene cation. Nat. Commun. 8, 1018 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ren, X. et al. An (e, 2e + ion) study of low-energy electron-impact ionization and fragmentation of tetrahydrofuran with high mass and energy resolutions. J. Chem. Phys. 141, 134314 (2014).

    PubMed  Google Scholar 

  67. Frisch, M. J. et al. Gaussian 16 revision A.03 (Gaussian, 2016).

Download references

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China under grants no. 11974272 (X.R., Z.X., J.Z.) and no. 11774281 (X.R., J.Z.) and the Deutsche Forschungsgemeinschaft under project no. RE 2966/5-1 (X.R., A.D.). E.W. acknowledges a fellowship from the Alexander von Humboldt Foundation. J.Z. is grateful for support from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Contributions

X.R. and A.D. conceived and supervised the project. X.R. performed the experiments and analysed the data. X.R., J.Z. and E.W. carried out the molecular dynamics simulations. N.S. performed the energetic calculations. X.R. and A.D. wrote the first draft of the manuscript. All authors including T.Y., Z.X. and T.P. contributed to the interpretation of the data and commented on the manuscript.

Corresponding author

Correspondence to Xueguang Ren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Elke Fasshauer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Calculated kinetic energy spectra for C6H6+ + C6H6+ Coulomb explosion process.

From top to bottom rows, the spectra correspond to the results for T-shape (a-c), PD (d-f), TT (g-i) and S (j-l) conformers of the benzene dimer, respectively. Left column: Total kinetic energy of all atoms (black lines) and the COM kinetic energy of the exploding C6H6+ + C6H6+ ion pair (red lines) as a function of propagation time; Middle column: The initial Coulomb energy calculated from the COM distance at t = 0 fs; Right column: Energy difference between the initial Coulomb energy and the KER.

Source data

Extended Data Fig. 2 Measured ion TOF spectra for different targets.

The spectra show the measurements for a mixture of C6H6 and C6D6 (M), the pure C6H6 (H) and C6D6 (D) targets and the sum of D + H (S) result. The numbered ion mass peaks are (1) (C6H2,3)+, (2) (C6H4)+, (3) (C6H5)+, (4) (C6H6)+, (5) (13CC5H6)+, (6) (13C2C4H6)+, (7) (C6D5)+, (8) (C6D5H)+, (9) (C6D6)+, (10) (13CC5D6)+ and 11 (13C2C4D6)+. The M-S difference spectrum is obtained to estimate the possible contribution of a fusion pathway.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Table 1, Discussion Sections I–IV and references.

Supplementary Data 1

Atomic coordinates of the optimized computational models, and the initial and final configurations for molecular dynamics trajectories.

Supplementary Data 2

Statistical source data for Supplementary Figs. 1, 2 and 4–7.

Source data

Source Data Fig. 2

Statistical source data for Fig. 2a,b.

Source Data Fig. 3

Statistical source data for Fig. 3a–e.

Source Data Fig. 4

Statistical source data for Fig. 4a–c.

Source Data Fig. 5

Statistical source data for Fig. 5a,b.

Source Data Extended Data Fig. 1

Statistical source data for Extended Data Fig. 1.

Source Data Extended Data Fig. 2

Statistical source data for Extended Data Fig. 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Zhou, J., Wang, E. et al. Ultrafast energy transfer between π-stacked aromatic rings upon inner-valence ionization. Nat. Chem. 14, 232–238 (2022). https://doi.org/10.1038/s41557-021-00838-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00838-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing