Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electron spin resonance of single iron phthalocyanine molecules and role of their non-localized spins in magnetic interactions

Abstract

Electron spin resonance (ESR) spectroscopy is a crucial tool, through spin labelling, in investigations of the chemical structure of materials and of the electronic structure of materials associated with unpaired spins. ESR spectra measured in molecular systems, however, are established on large ensembles of spins and usually require a complicated structural analysis. Recently, the combination of scanning tunnelling microscopy with ESR has proved to be a powerful tool to image and coherently control individual atomic spins on surfaces. Here we extend this technique to single coordination complexes—iron phthalocyanines (FePc)—and investigate the magnetic interactions between their molecular spin with either another molecular spin (in FePc–FePc dimers) or an atomic spin (in FePc–Ti pairs). We show that the molecular spin density of FePc is both localized at the central Fe atom and also distributed to the ligands (Pc), which yields a strongly molecular-geometry-dependent exchange coupling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: [FePc] molecules adsorbed on MgO/Ag(100) and ESR measurements with varied tip fields.
Fig. 2: Spin coupling in [FePc]–[FePc] dimers.
Fig. 3: DFT calculations of exchange coupling in an [FePc]–[FePc] dimer atop MgO only.
Fig. 4: Exchange coupling of [FePc]–TiB pairs with different TiB–ligand distance.
Fig. 5: Molecular-geometry-dependent exchange coupling in [FePc]–TiB pairs.

Similar content being viewed by others

Data availability

All the data that support the findings of this study are available in this article and its Supplementary Information, or from the corresponding authors on reasonable request. The source data and DFT models that support all the figures displayed in the main article and Supplementary Information are also publicly available through the link https://doi.org/10.6084/m9.figshare.16574534.v137.

Code availability

The MATLAB code used to plot and fit the ESR spectra displayed in article and Supplementary Information is available through the Figshare link, https://doi.org/10.6084/m9.figshare.16574534.v137. WSxM software39 was used to change the colour schemes of our STM images for better clarity; we used the integrated low-order Gaussian filtering function, a built-in function within the software, without modifications.

References

  1. Atzori, M. & Sessoli, R. The second quantum revolution: role and challenges of molecular chemistry. J. Am. Chem. Soc. 141, 11339–11352 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Wrachtrup, J., von Borczyskowski, C., Bernard, J., Orrit, M. & Brown, R. Optical detection of magnetic resonance in a single molecule. Nature 363, 244–245 (1993).

    Article  CAS  Google Scholar 

  3. Köhler, J. et al. Magnetic resonance of a single molecular spin. Nature 363, 242–244 (1993).

    Article  Google Scholar 

  4. Bayliss, S. L. et al. Optically addressable molecular spins for quantum information processing. Science 370, 1309–1312 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Lovchinsky, I. et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836–841 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Gehring, P., Thijssen, J. M. & van der Zant, H. S. J. Single-molecule quantum-transport phenomena in break junctions. Nat. Rev. Phys. 1, 381–396 (2019).

    Article  Google Scholar 

  8. Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Balestro, F. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357–360 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Thiele, S. et al. Electrically driven nuclear spin resonance in single-molecule magnets. Science 344, 1135–1138 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Tesi, L. et al. Quantum coherence in a processable vanadyl complex: new tools for the search of molecular spin qubits. Chem. Sci. 7, 2074–2083 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Graham, M. J. et al. Influence of electronic spin and spin–orbit coupling on decoherence in mononuclear transition metal complexes. J. Am. Chem. Soc. 136, 7623–7626 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Seifert, T. S. et al. Single-atom electron paramagnetic resonance in a scanning tunneling microscope driven by a radio-frequency antenna at 4 K. Phys. Rev. Res. 2, 013032 (2020).

    Article  CAS  Google Scholar 

  13. Natterer, F. D. et al. Upgrade of a low-temperature scanning tunneling microscope for electron-spin resonance. Rev. Sci. Instrum. 90, 013706 (2019).

    Article  PubMed  Google Scholar 

  14. Baumann, S. et al. Electron paramagnetic resonance of individual atoms on a surface. Science 350, 417–420 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Willke, P. et al. Hyperfine interaction of individual atoms on a surface. Science 362, 336–339 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Yang, K. et al. Electrically controlled nuclear polarization of individual atoms. Nat. Nanotechnol. 13, 1120–1125 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Durkan, C. & Welland, M. E. Electronic spin detection in molecules using scanning-tunneling-microscopy-assisted electron-spin resonance. Appl. Phys. Lett. 80, 458–460 (2002).

    Article  CAS  Google Scholar 

  18. Hiraoka, R. et al. Single-molecule quantum dot as a Kondo simulator. Nat. Commun. 8, 16012 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mugarza, A. et al. Electronic and magnetic properties of molecule–metal interfaces: transition-metal phthalocyanines adsorbed on Ag(100). Phys. Rev. B 85, 155437 (2012).

    Article  Google Scholar 

  20. Yang, K. et al. Tunable giant magnetoresistance in a single-molecule junction. Nat. Commun. 10, 3599 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater. 7, 179–186 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Bae, Y. et al. Enhanced quantum coherence in exchange coupled spins via singlet-triplet transitions. Sci. Adv. 4, eaau4159 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Willke, P., Yang, K., Bae, Y., Heinrich, A. J. & Lutz, C. P. Magnetic resonance imaging of single atoms on a surface. Nat. Phys. 15, 1005–1010 (2019).

    Article  CAS  Google Scholar 

  24. Tsukahara, N. et al. Adsorption-induced switching of magnetic anisotropy in a single iron(II) phthalocyanine molecule on an oxidized Cu(110) surface. Phys. Rev. Lett. 102, 167203 (2009).

    Article  PubMed  Google Scholar 

  25. Abragam, A. & Bleaney, B. Electron Paramagnetic Resonance of Transition Ions (Oxford Univ. Press, 2012).

  26. Yang, K. et al. Tuning the exchange bias on a single atom from 1 mT to 10 T. Phys. Rev. Lett. 122, 227203 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Yan, S., Choi, D.-J., Burgess, J. A. J., Rolf-Pissarczyk, S. & Loth, S. Control of quantum magnets by atomic exchange bias. Nat. Nanotechnol. 10, 40–45 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Assour, J. M. & Kahn, W. K. Electron spin resonance of α- and β-cobalt phthalocyanine. J. Am. Chem. Soc. 87, 207–212 (1965).

    Article  CAS  Google Scholar 

  29. Konarev, D. V. et al. Ionic compound containing iron phthalocyanine (FeIPc) anions and (C70)2 dimers. Optical and magnetic properties of (FeIPc) in the solid state. Dalton Trans. 41, 13841–13847 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Wolf, E. L. & Losee, D. L. G-shifts in the ‘s-d’ exchange theory of zero-bias tunneling anomalies. Phys. Lett. A 29, 334–335 (1969)

    Article  Google Scholar 

  31. Barnes, S. E. Theory of electron spin resonance of magnetic ions in metals. Adv. Phys. 30, 801–938 (1981).

    Article  CAS  Google Scholar 

  32. Yang, K. et al. Engineering the eigenstates of coupled spin-1/2 atoms on a surface. Phys. Rev. Lett. 119, 227206 (2017).

    Article  PubMed  Google Scholar 

  33. Choi, T. et al. Atomic-scale sensing of the magnetic dipolar field from single atoms. Nat. Nanotechnol. 12, 420–424 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Noodleman, L. Valence bond description of antiferromagnetic coupling in transition metal dimers. J. Chem. Phys. 74, 5737–5743 (1981).

    Article  CAS  Google Scholar 

  35. Czap, G. et al. Probing and imaging spin interactions with a magnetic single-molecule sensor. Science 364, 670–673 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Ferrando-Soria, J. et al. A modular design of molecular qubits to implement universal quantum gates. Nat. Commun. 7, 11377 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, X. et al. Electron spin resonance of single iron-phthalocyanine molecules and role of their non-localized spins in magnetic interaction (source data, codes and raw images). Figshare https://doi.org/10.6084/m9.figshare.16574534.v1 (2021).

  38. Paul, W. et al. Control of the millisecond spin lifetime of an electrically probed atom. Nat. Phys. 13, 403–407 (2017).

    Article  CAS  Google Scholar 

  39. Horcas, I. et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  PubMed  Google Scholar 

  41. Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Prandini, G., Marrazzo, A., Castelli, I. E., Mounet, N. & Marzari, N. Precision and efficiency in solid-state pseudopotential calculations. npj Comput. Mater. 4, 1–17 (2018).

    Article  Google Scholar 

  43. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  44. Grimme, S., Hansen, A., Brandenburg, J. G. & Bannwarth, C. Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 116, 5105–5154 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All the authors acknowledge support from the Institute for Basic Science under grant IBS-R027-D1. P.W. also acknowledges funding from the Emmy Noether Programme of the DFG (WI5486/1-1). We thank N. Lorente for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

T.C. and X.Z. designed the project. X.Z., Y.W., T.B. and P.W. performed the experiments. C.W. carried out the DFT calculations. H.A. contributed to the Hamiltonian model simulations. X.Z. and T.C. wrote the manuscript with the help of all the authors. T.C. and A.J.H. advised the project process.

Corresponding authors

Correspondence to Andreas J. Heinrich or Taeyoung Choi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–19: STM images, STM spectroscopic measurements, ESR spectra and DFT studies, additional discussion, Figs. 1–25, Tables 1–3 and references

Supplementary Data 1

All related DFT computational models used in the main article and Supplementary Information are supplied in a Supplementary zip file. Once unzipped, the name of each file indicates its content.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wolf, C., Wang, Y. et al. Electron spin resonance of single iron phthalocyanine molecules and role of their non-localized spins in magnetic interactions. Nat. Chem. 14, 59–65 (2022). https://doi.org/10.1038/s41557-021-00827-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00827-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing