Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A chiral interlocking auxiliary strategy for the synthesis of mechanically planar chiral rotaxanes

An Author Correction to this article was published on 17 December 2021

This article has been updated


Rotaxanes can display molecular chirality solely due to the mechanical bond between the axle and encircling macrocycle without the presence of covalent stereogenic units. However, the synthesis of such molecules remains challenging. We have discovered a combination of reaction partners that function as a chiral interlocking auxiliary to both orientate a macrocycle and, effectively, load it onto a new axle. Here we use these substrates to demonstrate the potential of a chiral interlocking auxiliary strategy for the synthesis of mechanically planar chiral rotaxanes by producing a range of examples with high enantiopurity (93–99% e.e.), including so-called ‘impossible’ rotaxanes whose axles lack any functional groups that would allow their direct synthesis by other means. Intriguingly, by varying the order of bond-forming steps, we can effectively choose which end of an axle the macrocycle is loaded onto, enabling the synthesis of both hands of a single target using the same reactions and building blocks.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The chiral interlocking auxiliary concept for the synthesis of MPC rotaxanes.
Fig. 2: The stereoselective synthesis of rotaxanes 4, their analysis by 1H NMR and single-crystal X-ray diffraction and the analysis of their co-conformational properties.
Fig. 3: Demonstration of the chiral interlocking auxiliary strategy for the synthesis of MPC rotaxanes with high stereopurity (determined by CSP-HPLC throughout).
Fig. 4: Synthesis of ‘impossible’ MPC rotaxanes in high stereopurity (determined by CSP-HPLC) using the chiral interlocking auxiliary strategy.
Fig. 5: Combining the chiral interlocking auxiliary approach with a grafting strategy and application of this methodology to the stereodivergent synthesis of rotaxane 28 from a single set of building blocks.
Fig. 6: Stereochemical analysis of rotaxane 28 demonstrating that the two different routes (as shown in Fig. 5) yield opposite enantiomers in high stereopurity.

Data availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2069804 (rac-4b(1)) and 2093365 (rac-4b(2)). Copies of the data can be obtained free of charge via

Characterization data (NMR, mass spectrometry, circular dichroism spectroscopy, HPLC) for all novel compounds reported here are available from the University of Southampton repository at

Change history


  1. Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines (Wiley, 2016).

  2. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    CAS  Article  Google Scholar 

  3. Heard, A. W. & Goldup, S. M. Simplicity in the design, operation, and applications of mechanically interlocked molecular machines. ACS Cent. Sci. 6, 117–128 (2020).

    CAS  Article  Google Scholar 

  4. Jamieson, E. M. G., Modicom, F. & Goldup, S. M. Chirality in rotaxanes and catenanes. Chem. Soc. Rev. 47, 5266–5311 (2018).

    CAS  Article  Google Scholar 

  5. Evans, N. H. Chiral catenanes and rotaxanes: fundamentals and emerging applications. Chem. Eur. J. 24, 3101–3112 (2018).

    CAS  Article  Google Scholar 

  6. Nakazono, K. & Takata, T. Mechanical chirality of rotaxanes: synthesis and function. Symmetry 12, 144 (2020).

    CAS  Article  Google Scholar 

  7. Maynard, J. R. J. & Goldup, S. M. Strategies for the synthesis of enantiopure mechanically chiral molecules. Chem 6, 1914–1932 (2020).

    CAS  Article  Google Scholar 

  8. Kaida, Y., Okamoto, Y., Chambron, J. C., Mitchell, D. K. & Sauvage, J. P. The separation of optically-active copper (i) catenates. Tetrahedron Lett. 34, 1019–1022 (1993).

    CAS  Article  Google Scholar 

  9. Yamamoto, C., Okamoto, Y., Schmidt, T., Jager, R. & Vogtle, F. Enantiomeric resolution of cycloenantiomeric rotaxane, topologically chiral catenane, and pretzel-shaped molecules: observation of pronounced circular dichroism. J. Am. Chem. Soc. 119, 10547–10548 (1997).

    CAS  Article  Google Scholar 

  10. Hirose, K. et al. The asymmetry is derived from mechanical interlocking of achiral axle and achiral ring components—syntheses and properties of optically pure [2]rotaxanes. Symmetry 10, 20 (2018).

    Article  Google Scholar 

  11. Makita, Y. et al. Catalytic asymmetric synthesis and optical resolution of planar chiral rotaxane. Chem. Lett. 36, 162–163 (2007).

    CAS  Article  Google Scholar 

  12. Tian, C., Fielden, S. D. P., Perez-Saavedra, B., Vitorica-Yrezabal, I. J. & Leigh, D. A. Single-step enantioselective synthesis of mechanically planar chiral [2]rotaxanes using a chiral leaving group strategy. J. Am. Chem. Soc. 142, 9803–9808 (2020).

    CAS  Article  Google Scholar 

  13. Denis, M. & Goldup, S. M. The active template approach to interlocked molecules. Nat. Rev. Chem. 1, 0061 (2017).

    CAS  Article  Google Scholar 

  14. Tian, C., Fielden, S. D. P., Whitehead, G. F. S., Vitorica-Yrezabal, I. J. & Leigh, D. A. Weak functional group interactions revealed through metal-free active template rotaxane synthesis. Nat. Commun. 11, 744 (2020).

    CAS  Article  Google Scholar 

  15. Heard, A. W. & Goldup, S. M. Synthesis of a mechanically planar chiral rotaxane ligand for enantioselective catalysis. Chem 6, 994–1006 (2020).

    CAS  Article  Google Scholar 

  16. Gaedke, M. et al. Chiroptical inversion of a planar chiral redox-switchable rotaxane. Chem. Sci. 10, 10003–10009 (2019).

    CAS  Article  Google Scholar 

  17. Ishiwari, F., Nakazono, K., Koyama, Y. & Takata, T. Induction of single-handed helicity of polyacetylenes using mechanically chiral rotaxanes as chiral sources. Angew. Chem. Int. Ed. 56, 14858–14862 (2017).

    CAS  Article  Google Scholar 

  18. Imayoshi, A. et al. Enantioselective preparation of mechanically planar chiral rotaxanes by kinetic resolution strategy. Nat. Commun. 12, 404 (2021).

    CAS  Article  Google Scholar 

  19. Eliel, E., Wilen, S. & Mander, L. Stereochemistry of Organic Compounds (Wiley, 1994).

  20. Jinks, M. A. et al. Stereoselective synthesis of mechanically planar chiral rotaxanes. Angew. Chem. Int. Ed. 57, 14806–14810 (2018).

    CAS  Article  Google Scholar 

  21. Denis, M., Lewis, J. E. M., Modicom, F. & Goldup, S. M. An auxiliary approach for the stereoselective synthesis of topologically chiral catenanes. Chem 5, 1512–1520 (2019).

    CAS  Article  Google Scholar 

  22. Aucagne, V., Hanni, K. D., Leigh, D. A., Lusby, P. J. & Walker, D. B. Catalytic “click” rotaxanes: a substoichiometric metal-template pathway to mechanically interlocked architectures. J. Am. Chem. Soc. 128, 2186–2187 (2006).

    CAS  Article  Google Scholar 

  23. Lahlali, H., Jobe, K., Watkinson, M. & Goldup, S. M. Macrocycle size matters: “small” functionalized rotaxanes in excellent yield using the CuAAC active template approach. Angew. Chem. Int. Ed. 50, 4151–4155 (2011).

    CAS  Article  Google Scholar 

  24. Lewis, J. E. M., Modicom, F. & Goldup, S. M. Efficient multicomponent active template synthesis of catenanes. J. Am. Chem. Soc. 140, 4787–4791 (2018).

    CAS  Article  Google Scholar 

  25. Cirulli, M. et al. Rotaxane-based transition metal complexes: effect of the mechanical bond on structure and electronic properties. J. Am. Chem. Soc. 141, 879–889 (2019).

    CAS  Article  Google Scholar 

  26. Zhang, Z., Tizzard, G. J., Williams, J. A. G. & Goldup, S. M. Rotaxane PtII-complexes: mechanical bonding for chemically robust luminophores and stimuli responsive behaviour. Chem. Sci. 11, 1839–1847 (2020).

    CAS  Article  Google Scholar 

  27. Hannam, J. S. et al. Controlled submolecular translational motion in synthesis: a mechanically interlocking auxiliary. Angew. Chem. Int. Ed. 43, 3260–3264 (2004).

    CAS  Article  Google Scholar 

  28. Chao, S., Romuald, C., Fournel-Marotte, K., Clavel, C. & Coutrot, F. A strategy utilizing a recyclable macrocycle transporter for the efficient synthesis of a triazolium-based [2]rotaxane. Angew. Chem. Int. Ed. 53, 6914–6919 (2014).

    CAS  Article  Google Scholar 

  29. Koenis, M. A. J. et al. Vibrational circular dichroism spectroscopy for probing the expression of chirality in mechanically planar chiral rotaxanes. Chem. Sci. 11, 8469–8475 (2020).

    CAS  Article  Google Scholar 

  30. Coutrot, F., Waeles, P. & Gauthier, M. Challenges and opportunities in the post-synthetic modification of interlocked molecules. Angew. Chem. Int. Ed. 60, (2020).

  31. Rowan, S. J. & Stoddart, J. F. Precision molecular grafting: exchanging surrogate stoppers in [2]rotaxanes. J. Am. Chem. Soc. 122, 164–165 (2000).

    CAS  Article  Google Scholar 

  32. Gaedke, M. et al. Chiroptical inversion of a planar chiral redox-switchable rotaxane. Chem. Sci. 10, 10003–10009 (2019).

    CAS  Article  Google Scholar 

  33. Corra, S. et al. Chemical on/off switching of mechanically planar chirality and chiral anion recognition in a [2]Rotaxane molecular shuttle. J. Am. Chem. Soc. 141, 9129–9133 (2019).

    CAS  Article  Google Scholar 

  34. Martinez-Cuezva, A., Saura-Sanmartin, A., Alajarin, M. & Berna, J. Mechanically interlocked catalysts for asymmetric synthesis. ACS Catal. 10, 7719–7733 (2020).

    CAS  Article  Google Scholar 

  35. Pairault, N. & Niemeyer, J. Chiral mechanically interlocked molecules—applications of rotaxanes, catenanes and molecular knots in stereoselective chemosensing and catalysis. Synlett 29, 689–698 (2018).

    CAS  Article  Google Scholar 

  36. Mitra, R., Zhu, H., Grimme, S. & Niemeyer, J. Functional mechanically interlocked molecules: asymmetric organocatalysis with a catenated bifunctional bronsted acid. Angew. Chem. Int. Ed. 56, 11456–11459 (2017).

    CAS  Article  Google Scholar 

  37. Pairault, N. et al. Heterobifunctional rotaxanes for asymmetric catalysis. Angew. Chem. Int. Ed. 59, 5102–5107 (2020).

    CAS  Article  Google Scholar 

  38. Dommaschk, M., Echavarren, J., Leigh, D. A., Marcos, V. & Singleton, T. A. Dynamic control of chiral space through local symmetry breaking in a rotaxane organocatalyst. Angew. Chem. Int. Ed. 58, 14955–14958 (2019).

    CAS  Article  Google Scholar 

  39. Cakmak, Y., Erbas-Cakmak, S. & Leigh, D. A. Asymmetric catalysis with a mechanically point-chiral rotaxane. J. Am. Chem. Soc. 138, 1749–1751 (2016).

    CAS  Article  Google Scholar 

Download references


S.M.G. thanks the European Research Council (Consolidator Grant Agreement number 724987), the EPSRC (EP/L016621/1) and the Leverhulme Trust (ORPG-2733) for funding and the Royal Society for a Wolfson Research Fellowship (RSWF\FT\180010). J.M.S. thanks the Royal Society for a Newton International Fellowship (NIF\R1\181686). A.W.H. thanks the University of Southampton for a Presidential Scholarship.

Author information

Authors and Affiliations



M.A.J. synthesized rotaxane 4b. M.A.J. and A.d.J. developed the chiral interlocking auxiliary concept in collaboration with S.M.G. A.d.J. synthesized rotaxanes 8, 1315, 23 and 28 with support from M.A.J. who provided synthetic intermediates. D.L. performed the stereochemical characterization of rotaxanes 4, 8, 1315, 23 and 28. D.L. carried out the co-conformational analysis of rotaxane 4 and associated experiments. A.W.H. and J.M.S. developed the cross-coupling concept and collaborated to synthesize rotaxane 10. J.M.S. synthesized and characterized rotaxanes 1820 and demonstrated the importance of the o-Me group using alkyne S87. A.W.H. synthesized and characterized rotaxane 12. G.J.T. collected the single-crystal X-ray diffraction data of rac-4b and solved and refined the structures. D.L. and A.W.H. managed the preparation of the Supplementary Information. S.M.G. directed the research. All authors contributed to the analysis of the results and the writing of the manuscript.

Corresponding author

Correspondence to Stephen M. Goldup.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental data, procedural details, synthesis and characterization data, NMR spectra, circular dichroism spectra, HPLC chromatograms, X-ray crystallographic data, discussions, Figs. 1–418 and Tables 1–6.

Supplementary Data 1

Crystallographic data for compound rac-4b(1). CCDC reference 2069804.

Supplementary Data 1

Crystallographic data for compound rac-4b(2). CCDC reference 2093365.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Juan, A., Lozano, D., Heard, A.W. et al. A chiral interlocking auxiliary strategy for the synthesis of mechanically planar chiral rotaxanes. Nat. Chem. 14, 179–187 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing