Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A versatile approach for the synthesis of degradable polymers via controlled ring-opening metathesis copolymerization

Abstract

Norbornene derivatives (NBEs) are common monomers for living ring-opening metathesis polymerization and yield polymers with low dispersities and diverse functionalities. However, the all-carbon backbone of poly-NBEs is non-degradable. Here we report a method to synthesize degradable polymers by copolymerizing 2,3-dihydrofuran with NBEs. 2,3-Dihydrofuran rapidly reacts with Grubbs catalyst to form a thermodynamically stable Ru Fischer carbene—the only detectable active Ru species during copolymerization—and the addition of NBEs becomes rate determining. This reactivity attenuates the NBE homoaddition and allows uniform incorporation of acid-degradable enol ether linkages throughout the copolymers, which enables complete polymer degradation while maintaining the favourable characteristics of living ring-opening metathesis polymerization. Copolymerization of 2,3-dihydrofuran with NBEs gives low dispersity polymers with tunable solubility, glass transition temperature and mechanical properties. These polymers can be fully degraded into small molecule or oligomeric species under mildly acidic conditions. This method can be readily adapted to traditional ring-opening metathesis polymerization of widely used NBEs to synthesize easily degradable polymers with tunable properties for various applications and for environmental sustainability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different strategies and compound types for producing ROMP-based materials.
Fig. 2: DHF–NBE copolymers and copolymer degradation products.
Fig. 3: 13C NMR spectroscopic analysis of dyads in P1a.
Fig. 4: Tensile properties of NBE–DHF copolymers.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the Article and its Supplementary Information. Source data are provided with this paper.

References

  1. Grubbs, R. H. Khosravi, E. Handbook of Metathesis 2nd edn Vol. 3 (Wiley-VCH, 2015).

  2. Kamaly, N., Yameen, B., Wu, J. & Farokhzad, O. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663 (2016).

    Article  CAS  Google Scholar 

  3. Haider, T., Volker, C., Kramm, J., Landfester, K. & Wurm, F. Plastics of the future? The impact of biodegradable polymers on the environment and society. Angew. Chem. Int. Ed. 58, 50–62 (2018).

    Article  Google Scholar 

  4. Ma, S. & Webster, D. Degradable thermosets based on labile bonds or linkages: a review. Prog. Poly. Sci. 76, 65–110 (2018).

    Article  CAS  Google Scholar 

  5. Fishman, J. M. & Kiessling, L. L. Synthesis of functionalizable and degradable polymers by ring-opening metathesis polymerization. Angew. Chem. Int. Ed. 52, 5061–5064 (2013).

    Article  CAS  Google Scholar 

  6. Gutekunst, W. R. & Hawker, C. J. A general approach to sequence-controlled polymers using macrocyclic ring opening metathesis polymerization. J. Am. Chem. Soc. 137, 8038–8041 (2015).

    Article  CAS  Google Scholar 

  7. Nowalk, J. A. et al. Sequence-controlled polymers through entropy-driven ring-opening metathesis polymerization: theory, molecular weight control, and monomer design. J. Am. Chem. Soc. 141, 5741–5752 (2019).

    Article  CAS  Google Scholar 

  8. Bhaumik, A., Peterson, G. I., Kang, C. & Choi, T. L. Controlled living cascade polymerization to make fully degradable sugar-based polymers from d-glucose and d-galactose. J. Am. Chem. Soc. 141, 12207–12211 (2019).

    Article  CAS  Google Scholar 

  9. Debsharma, T., Behrendt, F., Laschewsky, A. & Schlaad, H. Ring-opening metathesis polymerization of biomass-derived levoglucosenol. Angew. Chem. Int. Ed. 58, 6718–6721 (2019).

    Article  CAS  Google Scholar 

  10. Ofsteadm, E. & Calderon, N. Equilibrium ring-opening polymerization of mono- and multicyclic unsaturated monomers. Makromol. Chem. 154, 21–34 (1972).

    Article  Google Scholar 

  11. Liu, H. et al. Dynamic remodeling of covalent networks via ring-opening metathesis polymerization. ACS Macro Lett. 7, 933–937 (2018).

    Article  CAS  Google Scholar 

  12. Neary, W. & Kennemur, J. Polypentenamer renaissance: challenges and opportunities. ACS Macro Lett. 8, 46–56 (2019).

    Article  CAS  Google Scholar 

  13. Moatsou, D., Nagarkar, A., Kilbinger, A. F. M. & O’Reilly, R. K. Degradable precision polynorbornenes via ring-opening metathesis polymerization. J. Polym. Sci. A 54, 1236–1242 (2016).

    Article  CAS  Google Scholar 

  14. Mallick, A. et al. Oxadiazabicyclooctenone as a versatile monomer for the construction of pH sensitive functional polymers via ROMP. Polym. Chem. 9, 372–377 (2018).

    Article  CAS  Google Scholar 

  15. Shieh, P., Nguyen, H. V. T. & Johnson, J. A. Tailored silyl ether monomers enable backbone-degradable polynorbornene-based linear, bottlebrush and star copolymers through ROMP. Nat. Chem. 11, 1124–1132 (2019).

    Article  CAS  Google Scholar 

  16. Shieh, P. et al. Cleavable comonomers enable degradable, recyclable thermoset plastics. Nature 583, 542–547 (2020).

    Article  CAS  Google Scholar 

  17. Liang, Y., Sun, H., Cao, W., Thompson, M. P. & Gianneschi, N. C. Degradable polyphosphoramidate via ring-opening metathesis polymerization. ACS Macro Lett. 9, 1417–1422 (2020).

    Article  Google Scholar 

  18. Elling, B. R., Su, J. K. & Xia, Y. Degradable polyacetals/ketals from alternating ring-opening metathesis polymerization. ACS Macro Lett. 21, 180–184 (2020).

    Article  Google Scholar 

  19. Boadi, F. O., Zhang, J., Yu, X., Bhatia, S. R. & Sampson, N. S. Alternating ring-opening metathesis polymerization provides easy access to functional and fully degradable polymers. Macromolecules 53, 5857–5868 (2020).

    Article  CAS  Google Scholar 

  20. Sun, H., Liang, Y., Thompson, M. & Gianneschi, N. Degradable polymers via olefin metathesis polymerization. Prog. Poly. Sci. 120, 101427 (2021).

    Article  CAS  Google Scholar 

  21. Feist, J. D. & Xia, Y. Enol ethers are effective monomers for ring-opening metathesis polymerization: synthesis of degradable and depolymerizable poly(2,3-dihydrofuran). J. Am. Chem. Soc. 142, 1186–1189 (2020).

    Article  CAS  Google Scholar 

  22. Sui, X., Zhang, T., Pabarue, A., Fu, L. & Gutekunst, W. Alternating cascade metathesis polymerization of enynes and cyclic enol ethers with active ruthenium Fischer carbenes. J. Am. Chem. Soc. 142, 12942–12947 (2020).

    Article  CAS  Google Scholar 

  23. Sanford, M. S., Love, J. A. & Grubbs, R. H. Mechanism and activity of ruthenium olefin metathesis catalysts. J. Am. Chem. Soc. 123, 6543–6554 (2001).

    Article  CAS  Google Scholar 

  24. Louie, J. & Grubbs, R. H. Metathesis of electron-rich olefins: structure and reactivity of electron-rich carbene complexes. Organometallics 21, 2153–2164 (2002).

    Article  CAS  Google Scholar 

  25. Yasir, M. et al. One-step ring opening metathesis block-like copolymers and their compositional analysis by a novel retardation technique. Angew. Chem. Int. Ed. 59, 13597–13601 (2020).

    Article  CAS  Google Scholar 

  26. Katayama, H. et al. Highly selective ring-opening/cross-metathesis reactions of norbornene derivatives using selenocarbene complexes as catalysts. Angew. Chem. Int. Ed. 39, 4513–4515 (2000).

    Article  CAS  Google Scholar 

  27. Liu, Z. & Rainier, J. D. Regioselective ring-opening/cross-metathesis reactions of norbornene derivatives with electron-rich olefins. Org. Lett. 7, 131–133 (2005).

    Article  CAS  Google Scholar 

  28. Kang, E.-H., Yu, S., Lee, I., Park, S. & Choi, T.-L. Strategies to enhance cyclopolymerization using third-generation Grubbs catalyst. J. Am. Chem. Soc. 136, 10508–10514 (2014).

    Article  CAS  Google Scholar 

  29. Elling, B., Su, J., Feist, J. & Xia, Y. Precise placement of single monomer units in living ring-opening metathesis polymerization. Chem 5, 2691–2701 (2019).

    Article  CAS  Google Scholar 

  30. Meyer, V. & Lowry, G. Integral and differential binary copolymerization equations. J. Polym. Sci. A 3, 2843–2851 (1965).

    CAS  Google Scholar 

  31. Lynd, N., Ferrier, R. Jr. & Beckingham, B. Recommendation for accurate experimental determination of reactivity ratios in chain copolymerization. Macromolecules 52, 2277–2285 (2019).

    Article  CAS  Google Scholar 

  32. Chatterjee, A. K., Morgan, J. P., Scholl, M. & Grubbs, R. H. Synthesis of functionalized olefins by cross and ring-closing metatheses. J. Am. Chem. Soc. 122, 3783–3784 (2000).

    Article  CAS  Google Scholar 

  33. Lee, C. W., Choi, T.-L. & Grubbs, R. H. Ring expansion via olefin metathesis. J. Am. Chem. Soc. 124, 3224–3225 (2002).

    Article  CAS  Google Scholar 

  34. Choi, T.-L., Rutenberg, I. M. & Grubbs, R. H. Synthesis of A,B-alternating copolymers by ring-opening-insertion-metathesis polymerization. Angew. Chem. Int. Ed. 41, 3839–3841 (2002).

    Article  CAS  Google Scholar 

  35. Chatterjee, A. K., Choi, T.-L., Sanders, D. P. & Grubbs, R. H. A general model for selectivity in olefin cross metathesis. J. Am. Chem. Soc. 125, 11360–11370 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Science Foundation for financial support (CHE-2106511). Y.X. thanks the Alfred Sloan Foundation for the Sloan fellowship.

Author information

Authors and Affiliations

Authors

Contributions

J.D.F. and Y.X. conceived this project. J.D.F. performed the majority of the experiments and D.C.L. synthesized and characterized the water-soluble copolymers. J.D.F. and Y.X. wrote the manuscript with input from D.C.L.

Corresponding author

Correspondence to Yan Xia.

Ethics declarations

Competing interests

J.D.F. and Y.X. are named inventors on a patent application (US Provisional Application 63/169,588) filed by Stanford University on the copolymerization method described in this work.

Additional information

Peer review information Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–33, Discussion and Tables 1 and 2.

Supplementary Video 1

Video showing degradation of crosslinked polymer P7bx upon addition of 1 drop of 1M HCl.

Source data

Source Data Fig. 2

Numerical data or dRI from GPC traces shown in Fig. 2.

Source Data Fig. 4

Numerical stress–strain data presented in Fig. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feist, J.D., Lee, D.C. & Xia, Y. A versatile approach for the synthesis of degradable polymers via controlled ring-opening metathesis copolymerization. Nat. Chem. 14, 53–58 (2022). https://doi.org/10.1038/s41557-021-00810-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00810-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing