Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Wittig reagents for chemoselective sulfenic acid ligation enables global site stoichiometry analysis and redox-controlled mitochondrial targeting

Abstract

Triphenylphosphonium ylides, known as Wittig reagents, are one of the most commonly used tools in synthetic chemistry. Despite their considerable versatility, Wittig reagents have not yet been explored for their utility in biological applications. Here we introduce a chemoselective ligation reaction that harnesses the reactivity of Wittig reagents and the unique chemical properties of sulfenic acid, a pivotal post-translational cysteine modification in redox biology. The reaction, which generates a covalent bond between the ylide nucleophilic α-carbon and electrophilic γ-sulfur, is highly selective, rapid and affords robust labelling under a range of biocompatible reaction conditions, which includes in living cells. We highlight the broad utility of this conjugation method to enable site-specific proteome-wide stoichiometry analysis of S-sulfenylation and to visualize redox-dependent changes in mitochondrial cysteine oxidation and redox-triggered triphenylphosphonium generation for the controlled delivery of small molecules to mitochondria.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Repurposing TPP ylides as probes for electrophilic sulfur in proteins.
Fig. 2: WYne-probe reactivity with sulfenic acid in complex biological settings.
Fig. 3: Profiling S-sulfenylation dynamics with WYneN in cells.
Fig. 4: Proteome-wide analysis of cysteine sulfenic acid site stoichiometry.
Fig. 5: Redox-triggered in situ TPP generation for mitochondrial cargo delivery.

Data availability

The MS proteomics data have been deposited at the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the iProX partner repository52 with the dataset identifier PXD025630. All other data associated with this study are available in the published article and its Supplementary Information. Source data are provided with this paper.

References

  1. 1.

    Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. Engl. 48, 6974–6998 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Devaraj, N. K. The future of bioorthogonal chemistry. ACS Cent. Sci. 4, 952–959 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Saxon, E. & Bertozzi, C. R. Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    Maryanoff, B. E. & Reitz, A. B. The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects. Chem. Rev. 89, 863–927 (1989).

    CAS  Article  Google Scholar 

  6. 6.

    El-Batta, A. et al. Wittig reactions in water media employing stabilized ylides with aldehydes. Synthesis of α,β-unsaturated esters from mixing aldehydes, α-bromoesters, and Ph3P in aqueous NaHCO3. J. Org. Chem. 72, 5244–5259 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Gupta, V. & Carroll, K. S. Sulfenic acid chemistry, detection and cellular lifetime. Biochim. Biophys. Acta Gen. Sub. 1840, 847–875 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Gupta, V. & Carroll, K. S. Profiling the reactivity of cyclic C-nucleophiles towards electrophilic sulfur in cysteine sulfenic acid. Chem. Sci. 7, 400–415 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Holmström, K. M. & Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 15, 411–421 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  10. 10.

    Paulsen, C. E. & Carroll, K. S. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem. Rev. 113, 4633–4679 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Leonard, S. E., Reddie, K. G. & Carroll, K. S. Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells. ACS Chem. Biol. 4, 783–799 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Yang, J., Gupta, V., Carroll, K. S. & Liebler, D. C. Site-specific mapping and quantification of protein S-sulphenylation in cells. Nat. Commun. 5, 4776 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Gupta, V. & Carroll, K. S. Rational design of reversible and irreversible cysteine sulfenic acid-targeted linear C-nucleophiles. Chem. Commun. 52, 3414–3417 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Gupta, V., Yang, J., Liebler, D. C. & Carroll, K. S. Diverse redoxome reactivity profiles of carbon nucleophiles. J. Am. Chem. Soc. 139, 5588–5595 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Shi, Y. & Carroll, K. S. Activity-based sensing for site-specific proteomic analysis of cysteine oxidation. Acc. Chem. Res. 53, 20–31 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Poole, L. B. et al. Fluorescent and affinity-based tools to detect cysteine sulfenic acid formation in proteins. Bioconjug. Chem. 18, 2004–2017 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Poole, L. B., Zeng, B.-B., Knaggs, S. A., Yakubu, M. & King, S. B. Synthesis of chemical probes to map sulfenic acid modifications on proteins. Bioconjug. Chem. 16, 1624–1628 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Pan, J. & Carroll, K. S. Light-mediated sulfenic acid generation from photocaged cysteine sulfoxide. Org. Lett. 17, 6014–6017 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Yang, J. et al. Global, in situ, site-specific analysis of protein S-sulfenylation. Nat. Protoc. 10, 1022–1037 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Fu, L., Liu, K., Ferreira, R. B., Carroll, K. S. & Yang, J. Proteome-wide analysis of cysteine S-sulfenylation using a benzothiazine-based probe. Curr. Protoc. Protein Sci. 95, e76 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  22. 22.

    Sun, R. et al. Chemoproteomics reveals chemical diversity and dynamics of 4-oxo-2-nonenal modifications in cells. Mol. Cell Proteomics 16, 1789–1800 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Chi, H. et al. Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine. Nat. Biotechnol. 36, 1059–1061 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Hussain, S. et al. A cysteine near the C-terminus of UCH-L1 is dispensable for catalytic activity but is required to promote AKT phosphorylation, eIF4F assembly, and malignant B-cell survival. Cell Death Discov. 5, 152 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Liu, Z. et al. Membrane-associated farnesylated UCH-L1 promotes α-synuclein neurotoxicity and is a therapeutic target for Parkinson’s disease. Proc. Natl Acad. Sci. USA 106, 4635–4640 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Kumar, R. et al. S-nitrosylation of UCHL1 induces its structural instability and promotes α-synuclein aggregation. Sci. Rep. 7, 44558 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Berndt, C., Lillig, C. H. & Holmgren, A. Thioredoxins and glutaredoxins as facilitators of protein folding. Biochim. Biophys. Acta Mol. Cell Res. 1783, 641–650 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    Fu, L. et al. Systematic and quantitative assessment of hydrogen peroxide reactivity with cysteines across human proteomes. Mol. Cell Proteomics 16, 1815–1828 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Karisch, R. et al. Global proteomic assessment of the classical protein-tyrosine phosphatome and ‘redoxome’. Cell 146, 826–840 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Lou, Y.-W. et al. Redox regulation of the protein tyrosine phosphatase PTP1B in cancer cells. FEBS J. 275, 69–88 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Zhou, S. et al. Peroxiredoxin 6 homodimerization and heterodimerization with glutathione S-transferase pi are required for its peroxidase but not phospholipase A2 activity. Free Radic. Biol. Med. 94, 145–156 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017).

    Article  CAS  Google Scholar 

  33. 33.

    Pajares, M. et al. Redox control of protein degradation. Redox Biol. 6, 409–420 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Murphy, M. P. & Smith, R. A. J. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol. 47, 629–656 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Frantz, M.-C. & Wipf, P. Mitochondria as a target in treatment. Environ. Mol. Mutagen. 51, 462–475 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Casey, J. R., Grinstein, S. & Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11, 50–61 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Adams, H. et al. The synthesis and Diels–Alder reactions of (E)- and (Z)-1-methoxy-3-(phenylsulfinyl)buta-1,3-dienes. J. Chem. Soc. Perkin Trans. 1 1998, 3967–3974 (1998).

    Article  Google Scholar 

  38. 38.

    Barattucci, A. et al. Transient sulfenic acids in the synthesis of biologically relevant products. Molecules 23, 1030 (2018).

    PubMed Central  Article  CAS  Google Scholar 

  39. 39.

    Zhang, X. M. & Bordwell, F. G. Equilibrium acidities and homolytic bond dissociation energies of the acidic carbon–hydrogen bonds in P-substituted triphenylphosphonium cations. J. Am. Chem. Soc. 116, 968–972 (1994).

    CAS  Article  Google Scholar 

  40. 40.

    Kelso, G. F. et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells. J. Biol. Chem. 276, 4588–4596 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies (CRC, 2007).

  42. 42.

    Su, Z. et al. Global redox proteome and phosphoproteome analysis reveals redox switch in Akt. Nat. Commun. 10, 5486 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Wu, R. et al. A large-scale method to measure absolute protein phosphorylation stoichiometries. Nat. Methods 8, 677–683 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Hansen, B. K. et al. Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation. Nat. Commun. 10, 1055 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Winterbourn, C. C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278–286 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Bak, D. W. & Weerapana, E. Cysteine-mediated redox signalling in the mitochondria. Mol. BioSyst. 11, 678–697 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Wood, Z. A., Poole, L. B. & Karplus, P. A. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650–653 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Boyapati, R. K. et al. Mitochondrial DNA Is a pro-inflammatory damage-associated molecular pattern released during active IBD. Inflamm. Bowel Dis. 24, 2113–2122 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Kudryavtseva, A. V. et al. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget 7, 44879–44905 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Gorman, G. S. et al. Mitochondrial diseases. Nat. Rev. Dis. Prim. 2, 16080 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Forrester, S. J. et al. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 122, 877–902 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Ma, J. et al. iProX: an integrated proteome resource. Nucleic Acids Res. 47, D1211–D1217 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Sun and T. Zhang from the Beijing Qinglian Biotech Co., Ltd, for their help and technical support. This work was supported by the US National Institutes of Health (R01 GM102187 and R01 CA174864 to K.S.C.) and the National Natural Science Foundation of China (21922702), the National Key R&D Program of China (2016YFA0501303) and the State Key Laboratory of Proteomics (SKLP-K201703 and SKLP-K201804) to J.Y.

Author information

Affiliations

Authors

Contributions

Y.S., J.Y. and K.S.C. conceived the project, designed experiments and analysed data. Y.S. synthesized and characterized the compounds. Y.S. and L.F. performed intact MS and quantitative proteomic experiments and data analysis. Y.S. performed the probe validation and cell-based experiments.

Corresponding authors

Correspondence to Jing Yang or Kate S. Carroll.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Megan Matthews and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Surveying Wittig reagent reactivity with sulfenic acid.

Wittig reagents 1-7 were screened for reaction with the dipeptide-SOH model compound. Rate constants were obtained in acetonitrile(ACN):25 mM NaOAc (1:2 v/v) pH = 4.9. Isolation yields, literature (in parentheses, reported in DMSO39) and experimental pKa values (in ACN-H2O, see Supplementary Figs. 3-4) are listed if available.

Extended Data Fig. 2 Imaging redox-dependent changes in mitochondrial cysteine oxidation.

a, Amide derivative of Wittig reagents exists predominantly in protonated form, setting stage for enrichment and detecting S-sulfenylation in mitochondria. b, Structure of the mitochondrial targeting sulfenic acid probe WYneN10 with enhanced lipophilicity. c, Live HeLa cells were incubated with BDP-WYneN10 (500 nM) and MitoTrackerTM Deep Red FM (100 nM) in DPBS. After 10 min, confocal images were taken. A scale bar of 20 µm is shown. R, Pearson’s correlation coefficient. d, BDP-WYneN10 tagged S-sulfenylated proteins with fluorescence inside mitochondria. e, BDP-WYneN10 fluorescence responded to external oxidative stress (0-5 mM H2O2) in live A549 cells (n = 4 areas from one representative experiment). f, WYneN10 disrupted mitochondrial respiration in A549 cells to a greater extent than other WYne probes (50 µM) (n = 12 biological replicates). OCR, oxygen consumption rate. Data in e-f are presented as box plots (maximum, 75%, median, 25%, minimum). P values were calculated using a two-tailed t-test. ns, not significant, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–26, Methods and NMR spectra.

Reporting Summary

Supplementary Table 1

Applications of WYne probes for mapping cysteine sulfenic acids in A549 cell lysates.

Supplementary Table 2

Application of WYneN for mapping cysteine sulfenic acids in intact A549 cells.

Supplementary Table 3

WYneN-based in situ S-sulfenylome analysis.

Supplementary Table 4

Proteome-wide analysis of cysteine sulfenic acid site stoichiometry in A549 cells.

Supplementary Data 1

Statistical Source Data for Supplementary Figures.

Source data

Source Data Fig. 2

Statistical Source Data.

Source Data Fig. 2

Unprocessed gel scans.

Source Data Fig. 3

Statistical Source Data.

Source Data Fig. 3

Unprocessed gel scans.

Source Data Fig. 4

Statistical Source Data.

Source Data Fig. 5

Statistical Source Data.

Source Data Extended Data Fig. 2

Statistical Source Data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Fu, L., Yang, J. et al. Wittig reagents for chemoselective sulfenic acid ligation enables global site stoichiometry analysis and redox-controlled mitochondrial targeting. Nat. Chem. 13, 1140–1150 (2021). https://doi.org/10.1038/s41557-021-00767-2

Download citation

Search

Quick links