Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Organocatalyst-controlled site-selective arene C–H functionalization

Abstract

Over the past three decades, organocatalysis has emerged as a powerful catalysis platform and has gradually been incorporated into the routine synthetic toolbox to obtain chiral molecules. However, its application in the site- and enantioselective functionalization of inactive aryl C–H bonds remains in its infancy. Here, we present an organocatalyst-controlled para-selective arene C–H functionalization strategy that addresses this issue, which remains an enduring challenge in arene functionalization chemistry. By emulating enzyme catalysis, the chiral phosphoric acid catalyst offers an ideal chiral environment for stereoinduction, and the projecting substituents give control of chemo- and site-selectivity. Various types of nucleophile are compatible with this method, affording more than 100 para-selective adducts with stereodefined carbon centres or axes in viable molecular contexts. This protocol is expected to provide a general strategy for para-selective functionalization of arene C–H bonds in a controlled manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Selective functionalization of C–H bonds and our design blueprint.
Fig. 2: Condition optimization and transformations.
Fig. 3: Proposed reaction pathways and mechanistic studies.

Similar content being viewed by others

Data availability

The X-ray crystallographic coordinates for the products reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition nos. CCDC 1992074 (12j), CCDC 1992075 (12r), CCDC 1992076 (12s), CCDC 1992068 (14), 1992069 (16) and 1992073 (18). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Experimental procedures and characterization of new compounds are available in the Supplementary Information.

References

  1. Abrams, D. J., Provencher, P. A. & Sorensen, E. J. Recent applications of C–H functionalization in complex natural product synthesis. Chem. Soc. Rev. 47, 8925–8967 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Wencel-Delord, J. & Glorius, F. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem. 5, 369–375 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012).

    Article  CAS  Google Scholar 

  4. Zhou, Z. & Parr, R. G. Activation hardness: new index for describing the orientation of electrophilic aromatic substitution. J. Am. Chem. Soc. 112, 5720–5724 (1990).

    Article  CAS  Google Scholar 

  5. Dey, A., Maity, S. & Maiti, D. Reaching the south: metal-catalyzed transformation of the aromatic para-position. Chem. Commun. 52, 12398–12414 (2016).

    Article  CAS  Google Scholar 

  6. Romero, N. A., Margrey, K. A., Tay, N. E. & Nicewicz, D. A. Site-selective arene C–H amination via photoredox catalysis. Science 349, 1326–1330 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Boursalian, G. B., Ham, W. S., Mazzotti, A. R. & Ritter, T. Charge-transfer-directed radical substitution enables para-selective C–H functionalization. Nat. Chem. 8, 810–815 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berger, F. et al. Site-selective and versatile aromatic C−H functionalization by thianthrenation. Nature 567, 223–228 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Bag, S. et al. Remote para-C–H functionalization of arenes by a D-shaped biphenyl template-based assembly. J. Am. Chem. Soc. 137, 11888–11891 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Maji, A. et al. Experimental and computational exploration of para-selective silylation with a hydrogen-bonded template. Angew. Chem. Int. Ed. 56, 14903–14907 (2017).

    Article  CAS  Google Scholar 

  11. Patra, T. et al. Palladium-catalyzed directed para C−H functionalization of phenols. Angew. Chem. Int. Ed. 55, 7751–7755 (2016).

    Article  CAS  Google Scholar 

  12. Hoque, M. E., Bisht, R., Haldar, C. & Chattopadhyay, B. Noncovalent interactions in Ir-catalyzed C–H activation: L-shaped ligand for para-selective borylation of aromatic esters. J. Am. Chem. Soc. 139, 7745–7748 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Maji, A. et al. H-bonded reusable template assisted para-selective ketonisation using soft electrophilic vinyl ethers. Nat. Commun. 9, 3582 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Dey, A., Sinha, S. K., Achar, T. K. & Maiti, D. Accessing remote meta- and para-C(sp2)–H bonds with covalently attached directing groups. Angew. Chem. Int. Ed. 58, 10820–10843 (2019).

    Article  CAS  Google Scholar 

  15. Dutta, U. et al. Rhodium catalyzed template-assisted distal para-C–H olefination. Chem. Sci. 10, 7426–7432 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pimparkar, S. et al. Para-selective cyanation of arenes by H-bonded template. Chem. Eur. J. 26, 11558–11564 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Shi, H. et al. Differentiation and functionalization of remote C–H bonds in adjacent positions. Nat. Chem. 12, 399–404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rittle, J. & Green, M. T. Cytochrome P450 compound I: capture, characterization and C–H bond activation kinetics. Science 330, 933–937 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Fishman, A., Tao, Y., Rui, L. & Wood, T. K. Controlling the regiospecific oxidation of aromatics via active site engineering of toluene para-monooxygenase of Ralstonia pickettii PKO1. J. Biol. Chem. 280, 506–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Liao, K., Negretti, S., Musaev, D. G., Bacsa, J. & Davies, H. M. L. Site-selective and stereoselective functionalization of unactivated C–H bonds. Nature 533, 230–234 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Liao, K. et al. Site-selective and stereoselective functionalization of non-activated tertiary C–H bonds. Nature 551, 609–613 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Liao, K. et al. Design of catalysts for site-selective and enantioselective functionalization of non-activated primary C–H bonds. Nat. Chem. 10, 1048–1055 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheng, C. & Hartwig, J. F. Rhodium-catalyzed intermolecular C–H silylation of arenes with high steric regiocontrol. Science 343, 853–857 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Ma, B. et al. Highly para-selective C−H alkylation of benzene derivatives with 2,2,2-trifluoroethyl α-aryl-α-diazoesters. Angew. Chem. Int. Ed. 56, 2749–2753 (2017).

    Article  CAS  Google Scholar 

  25. Okumura, S. et al. para-Selective alkylation of benzamides and aromatic ketones by cooperative nickel/aluminum catalysis. J. Am. Chem. Soc. 138, 14699–14704 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Saito, Y., Segawa, Y. & Itami, K. para-C–H borylation of benzene derivatives by a bulky iridium catalyst. J. Am. Chem. Soc. 137, 5193–5198 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, L., Semba, K. & Nakao, Y. para-Selective C−H borylation of (hetero)arenes by cooperative iridium/aluminum catalysis. Angew. Chem. Int. Ed. 56, 4853–4857 (2017).

    Article  CAS  Google Scholar 

  28. List, B., Lerner, R. A. & Barbas, C. F. III Proline-catalyzed direct asymmetric aldol reactions. J. Am. Chem. Soc. 122, 2395–2396 (2000).

    Article  CAS  Google Scholar 

  29. Ahrendt, K. A., Borths, C. J. & MacMillan, D. W. C. New strategies for organic synthesis: the first highly enantioselective organocatalytic Diels–Alder reaction. J. Am. Chem. Soc. 122, 4243–4244 (2000).

    Article  CAS  Google Scholar 

  30. Taylor, M. S. & Jacobsen, E. N. Asymmetric catalysis by chiral hydrogen-bond donors. Angew. Chem. Int. Ed. 45, 1520–1543 (2006).

    Article  CAS  Google Scholar 

  31. Mukherjee, S., Yang, J. W., Hoffmann, S. & List, B. Asymmetric enamine catalysis. Chem. Rev. 107, 5471–5569 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. MacMillan, D. W. C. The advent and development of organocatalysis. Nature 455, 304–308 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Silvi, M. & Melchiorre, P. Enhancing the potential of enantioselective organocatalysis with light. Nature 554, 41–49 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Metrano, A. J. & Miller, S. J. Peptide-based catalysts reach the outer sphere through remote desymmetrization and atroposelectivity. Acc. Chem. Res. 52, 199–215 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, J. et al. Carbonyl catalysis enables a biomimetic asymmetric Mannich reaction. Science 360, 1438–1442 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Tsuji, N. et al. Activation of olefins via asymmetric Brønsted acid catalysis. Science 359, 1501–1505 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Pupo, G. et al. Asymmetric nucleophilic fluorination under hydrogen bonding phase-transfer catalysis. Science 360, 638–642 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Gustafson, J. L., Lim, D. & Miller, S. J. Dynamic kinetic resolution of biaryl atropisomers via peptide-catalyzed asymmetric bromination. Science 328, 1251–1255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin, S. & Jacobsen, E. N. Thiourea-catalysed ring opening of episulfonium ions with indole derivatives by means of stabilizing non-covalent interactions. Nat. Chem. 4, 817–824 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Knowles, R. R. & Jacobsen, E. N. Attractive noncovalent interactions in asymmetric catalysis: links between enzymes and small molecule catalysts. Proc. Natl Acad. Sci. USA 107, 20678–20685 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jung, D., Jang, S. H., Yim, T. & Kim, J. Oxidation potential tunable organic molecules and their catalytic application to aerobic dehydrogenation of tetrahydroquinolines. Org. Lett. 20, 6436–6439 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Akiyama, T., Itoh, J., Yokota, K. & Fuchibe, K. Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. Angew. Chem. Int. Ed. 43, 1566–1568 (2004).

    Article  CAS  Google Scholar 

  43. Uraguchi, D. & Terada, M. Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc. 126, 5356–5357 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Akiyama, T. Stronger Brønsted acids. Chem. Rev. 107, 5744–5758 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Parmar, D., Sugiono, E., Raja, S. & Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing and metal phosphates. Chem. Rev. 114, 9047–9153 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Hansch, C., Leo, A. & Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991).

    Article  CAS  Google Scholar 

  47. Chen, M. & Sun, J. Catalytic asymmetric N-alkylation of indoles and carbazoles through 1,6-conjugate addition of aza-para-quinone methides. Angew. Chem. Int. Ed. 56, 4583–4587 (2017).

    Article  CAS  Google Scholar 

  48. Ma, D., Miao, C.-B. & Sun, J. Catalytic enantioselective House–Meinwald rearrangement: efficient construction of all-carbon quaternary stereocenters. J. Am. Chem. Soc. 141, 13783–13787 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Uyeda, C. & Jacobsen, E. N. Transition state charge stabilization through multiple non-covalent interactions in the guanidinium-catalyzed enantioselective Claisen rearrangement. J. Am. Chem. Soc. 133, 5062–5075 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, G.-Q. et al. Organocatalytic aryl–aryl bond formation: an atroposelective [3,3]-rearrangement approach to BINAM derivatives. J. Am. Chem. Soc. 135, 7414–7417 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Qi, L.-W., Mao, J.-H., Zhang, J. & Tan, B. Organocatalytic asymmetric arylation of indoles enabled by azo groups. Nat. Chem. 10, 58–64 (2017).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (grants 21825105 to B.T. and 21801121 to Y.-B.W.), Guangdong Provincial Key Laboratory of Catalysis (grant 2020B121201002 to B.T.), Guangdong Innovative Program (grant 2019BT02Y335 to B.T.), Shenzhen Special Funds (grants JCYJ20180305123508258 to S.-H.X. and JCYJ20180302174106405 to Y.-B.W.), Shenzhen Nobel Prize Scientists Laboratory Project and SUSTech Special Fund for the Construction of High-Level Universities (grant G02216402, B.T.). We dedicate this paper to the 100th Anniversary of Xiamen University.

Author information

Authors and Affiliations

Authors

Contributions

B.T. conceived and directed the project. J.-H.M. and Y.-B.W. designed and performed experiments. L.Y. performed the density functional theory calculations and mechanism analysis. S.-H.X., S.L., Q.-H.W., Y.C., Q.L. and J.L. helped with the collection of some new compounds and data analysis. B.T., S.-H.X., Y.-B.W., S.L. and L.Y. wrote the manuscript with input from all other authors. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yong-Bin Wang or Bin Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Debabrata Maiti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Figs. 1–14, experimental data, synthesis and characterization data, NMR spectra, X-ray crystallographic data and density functional theory calculation data.

Supplementary Data 1

Crystallographic data for compound 12j. CCDC reference 1992074.

Supplementary Data 2

Structure factors file for compound 12j. CCDC reference 1992074.

Supplementary Data 3

Crystallographic data for compound 12r. CCDC reference 1992075.

Supplementary Data 4

Structure factors file for compound 12r. CCDC reference 1992075.

Supplementary Data 5

Crystallographic data for compound 12s. CCDC reference 1992076.

Supplementary Data 6

Structure factors file for compound 12s. CCDC reference 1992076.

Supplementary Data 7

Crystallographic data for compound 14. CCDC reference 1992068.

Supplementary Data 8

Structure factors file for compound 14. CCDC reference 1992068.

Supplementary Data 9

Crystallographic data for compound 16. CCDC reference 1992069.

Supplementary Data 10

Structure factors file for compound 16. CCDC reference 1992069.

Supplementary Data 11

Crystallographic data for compound 18. CCDC reference 1992073.

Supplementary Data 12

Structure factors file for compound 18. CCDC reference 1992073.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, JH., Wang, YB., Yang, L. et al. Organocatalyst-controlled site-selective arene C–H functionalization. Nat. Chem. 13, 982–991 (2021). https://doi.org/10.1038/s41557-021-00750-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00750-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing