Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single nucleotide translation without ribosomes


The translation of messenger RNA sequences into polypeptide sequences according to the genetic code is central to life. How this process, which relies on the ribosomal machinery, arose from much simpler precursors is unclear. Here, we demonstrate that single nucleotides charged with an amino acid couple with amino acids linked to the 5′-terminus of an RNA primer in reactions directed by the nucleotides of an RNA template in dilute aqueous solution at 0 °C. When a mixture of U-Val, A-Gly and G-Leu competed for coupling to Gly-RNA, base pairing dictated which dipeptide sequence formed preferentially. The resulting doubly anchored dipeptides can retain their link to the primer for further extension or can be fully released under mild acidic conditions. These results show that a single-nucleotide-based form of translation exists that requires no more than oligoribonucleotides and anchored amino acids.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Translation in the cell and single-nucleotide translation presented in this work.
Fig. 2: Template effect in dipeptide formation.
Fig. 3: The RNA template determines which amino acid is coupled to produce a dipeptide.
Fig. 4: Release of a free peptide at the end of translation.
Fig. 5: Extension of dipeptido RNA to tripeptidoyl RNA, as detected by MALDI-TOF mass spectrometry after 45 h at 0 °C.

Data availability

The data generated and analysed during the current project are provided in this paper and its Supplementary Information. Supplementary data, materials and methods are presented in the Supplementary Information. Source data are provided with this paper.


  1. 1.

    Noller, H. F. Evolution of protein synthesis from an RNA world. Cold Spring Harb. Perspect. Biol. 4, a003681 (2012).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Crick, F. H. C., Brenner, S., Klug, A. & Pieczenik, G. A speculation on the origin of protein synthesis. Orig. Life 7, 389–397 (1976).

    CAS  PubMed  Google Scholar 

  3. 3.

    Morgens, D. W. The protein invasion: a broad review on the origin of the translational system. J. Mol. Evol. 77, 185–196 (2013).

    CAS  PubMed  Google Scholar 

  4. 4.

    Noller, H. F. RNA structure: reading the ribosome. Science 309, 1508–1514 (2005).

    CAS  PubMed  Google Scholar 

  5. 5.

    Gilbert, W. Origin of life: the RNA world. Nature 319, 618 (1986).

    Google Scholar 

  6. 6.

    Di Giulio, M. On the RNA world evidence in favor of an early ribonucleopeptide world. J. Mol. Evol. 45, 571–578 (1997).

    PubMed  Google Scholar 

  7. 7.

    De Duve, C. The onset of selection. Nature 433, 581–582 (2005).

    PubMed  Google Scholar 

  8. 8.

    Berg, P. The chemical synthesis of amino acyl adenylates. J. Biol. Chem. 233, 608–611 (1958).

    CAS  PubMed  Google Scholar 

  9. 9.

    Orgel, L. E. The origin of polynucleotide-directed protein synthesis. J. Mol. Evol. 29, 465–474 (1998).

    Google Scholar 

  10. 10.

    Paecht-Horowitz, M., Berger, J. & Katchalsky, A. Prebiotic synthesis of polypeptides by heterogeneous polycondensation of amino acid adenylates. Nature 228, 636–639 (1970).

    CAS  PubMed  Google Scholar 

  11. 11.

    Tamura, K. & Schimmel, P. Peptide synthesis with a template-like RNA guide and aminoacyl phosphate adaptors. Proc. Natl Acad. Sci. USA 100, 8666–8669 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Tamura, K. & Schimmel, P. Oligonucleotide-directed peptide synthesis in a ribosome- and ribozyme-free system. Proc. Natl. Acad. Sci. USA 98, 1393–1397 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Turk, R. M., Chumachenko, N. V. & Yarus, M. Multiple translational products from a five-nucleotide ribozyme. Proc. Natl Acad. Sci. USA 107, 4585–4589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Turk, R. M., Illangasekare, M. & Yarus, M. Catalyzed and spontaneous reactions on ribozyme ribose. J. Am. Chem. Soc. 133, 6044–6050 (2011).

    CAS  PubMed  Google Scholar 

  15. 15.

    Pascal, R., Boiteau, L. & Commeyras, A. From the prebiotic synthesis of alpha-amino acids towards a primitive translation apparatus for the synthesis of peptides. Top. Curr. Chem. 259, 69–122 (2005).

    CAS  Google Scholar 

  16. 16.

    Wolf, Y. I. & Koonin, E. V. On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation and subfunctionalization. Biol. Direct 2, 14 (2007).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Morris, K. N., Jensen, K. B., Julin, C. M., Weil, M. & Gold, L. High affinity ligands from in vitro selection: complex targets. Proc. Natl Acad. Sci. USA 95, 2902–2907 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    CAS  PubMed  Google Scholar 

  19. 19.

    Xiao, H., Murakami, H., Suga, H. & Feree-D’Amare, A. R. Structural basis of specific tRNA aminoacylation by a small in vitro selected ribozyme. Nature 454, 358–361 (2008).

    CAS  PubMed  Google Scholar 

  20. 20.

    Yarus, M. The genetic code and RNA-amino acid affinities. Life 7, 13 (2017).

    PubMed Central  Google Scholar 

  21. 21.

    Jauker, M., Griesser, H. & Richert, C. Spontaneous formation of RNA strands, peptidyl RNA and cofactors. Angew. Chem. Int. Ed. 54, 14564–14569 (2015).

    CAS  Google Scholar 

  22. 22.

    Griesser, H. et al. Ribonucleotides and RNA promote peptide chain growth. Angew. Chem. Int. Ed. 56, 1219–1223 (2017).

    CAS  Google Scholar 

  23. 23.

    Cherepanov, A. V. & de Vries, S. Kinetic mechanism of the Mg2+-dependent nucleotidyl transfer catalyzed by T4 DNA and RNA ligases. J. Biol. Chem. 277, 1695–1704 (2002).

    CAS  PubMed  Google Scholar 

  24. 24.

    Griesser, H., Bechthold, M., Tremmel, P., Kervio, E. & Richert, C. Amino acid-specific, ribonucleotide-promoted peptide formation in the absence of enzymes. Angew. Chem. Int. Ed. 56, 1224–1228 (2017).

    CAS  Google Scholar 

  25. 25.

    Jash, B. & Richert, C. Templates direct the sequence-specific anchoring of the C-terminus of peptido RNAs. Chem. Sci. 11, 3487–3494 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Huang, W. & Ferris, J. P. Synthesis of 35-40 mers of RNA oligomers from unblocked monomers. A simple approach to the RNA world. Chem. Commun. 2003, 1458–1459 (2003).

    Google Scholar 

  27. 27.

    Gottikh, B. P., Krayevskyn, A. A., Tarussovap, B., Purygin, P. & Tsilevich, T. L. The general synthetic route to amino acid esters of nucleotides and nucleosides-5′-triphosphates and some properties of these compounds. Tetrahedron 26, 4419–4433 (1970).

    CAS  PubMed  Google Scholar 

  28. 28.

    Grosjean, H. & Westhof, E. An integrated, structure- and energy-based view of the genetic code. Nucleic Acids Res. 44, 8020–8040 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Englert, M. et al. Aminoacylation of tRNA 2′- or 3′-hydroxyl by phosphoseryl- and pyrrolysyl-tRNA synthetases. FEBS Lett. 587, 3360–3364 (2013).

    CAS  PubMed  Google Scholar 

  30. 30.

    Motsch, S., Tremmel, P. & Richert, C. Regioselective formation of RNA strands in the absence of magnesium ions. Nucleic Acid Res. 48, 1097–1107 (2020).

    CAS  PubMed  Google Scholar 

  31. 31.

    Sievers, D. & von Kiedrowski, G. Self-replication of complementary nucleotide-based oligonucleotides. Nature 369, 221–224 (1994).

    CAS  PubMed  Google Scholar 

  32. 32.

    Schimpl, A., Lemmon, R. M. & Calvin, M. Cyanamide formation under primitive earth conditions. Science 147, 149–150 (1965).

    CAS  PubMed  Google Scholar 

  33. 33.

    Liu, Z., Ajram, G., Rossi, J.-C. & Pascal, R. The chemical likelihood of ribonucleotide-α-amino acid copolymers as players for early stages of evolution. J. Mol. Evol. 87, 83–92 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Kervio, E., Hochgesand, A., Steiner, U. E. & Richert, C. Templating efficiency of naked DNA. Proc. Natl Acad. Sci. USA 107, 12074–12079 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Sarracino, D. & Richert, C. Quantitative MALDI-TOF spectrometry of oligonucleotides and a nuclease assay. Bioorg. Med. Chem. Lett. 6, 2543–2548 (1996).

    CAS  Google Scholar 

  36. 36.

    Cornell, C. E. et al. Prebiotic amino acids bind to and stabilize prebiotic fatty acid membranes. Proc. Natl Acad. Sci. USA 116, 17239–17244 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Kervio, E., Sosson, M. & Richert, C. The effect of leaving groups on binding and reactivity in enzyme-free copying of DNA and RNA. Nucleic Acid Res. 44, 5504–5514 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Sosson, M., Pfeffer, D. & Richert, C. Enzyme-free ligation of dimers and trimers to RNA primers. Nucleic Acid Res. 47, 3836–3845 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Tetzlaff, C. N. & Richert, C. Synthesis and hydrolytic stability of 5′-aminoacylated oligouridylic acids. Tetrahedron Lett. 42, 5681–5684 (2001).

    CAS  Google Scholar 

  40. 40.

    Jovanovic, D., Tremmel, P., Pallan, P. S., Egli, M. & Richert, C. The enzyme-free release of nucleotides from phosphoramidates depends strongly on the amino acid. Angew. Chem. Int. Ed. 59, 20154–20160 (2020).

    CAS  Google Scholar 

  41. 41.

    Yi, R., Hongo, Y. & Fahrenbach, A. C. Synthesis of imidazole-activated ribonucleotides using cyanogen chloride. Chem. Commun. 54, 511–514 (2018).

    CAS  Google Scholar 

Download references


We thank D. Pfeffer for help with high-performance liquid chromatography, H. Griesser for reading and commenting on a draft of the manuscript, E. Kervio and S. Lorenz for discussions, D. Göhringer for technical assistance and C. Guttroff for measuring ESI mass spectra. This work was funded by Deutsche Forschungsgemeinschaft (project-ID 364653263-TRR 235) and the Volkswagen Foundation (grant no. Az 92 768) (to C.R.).

Author information




B.J., P.T. and D.J. performed the experiments, C.R. devised and supervised the project. All authors analysed the data. All authors wrote the manuscript and all authors reviewed and commented on the manuscript.

Corresponding author

Correspondence to Clemens Richert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Thomas Carell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Materials and methods, general protocols for synthesis, analytical data, Figs. 1–68 and Tables 1–6.

Source data

Source Data Fig. 2

Source data for Fig. 2c.

Source Data Fig. 3

Source data for Fig. 3b.

Source Data Fig. 5

Source data for Fig. 5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jash, B., Tremmel, P., Jovanovic, D. et al. Single nucleotide translation without ribosomes. Nat. Chem. 13, 751–757 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing