Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of monophosphines directly from white phosphorus

Abstract

Monophosphorus compounds are of enormous industrial importance due to the crucial roles they play in applications such as pharmaceuticals, photoinitiators and ligands for catalysis, among many others. White phosphorus (P4) is the key starting material for the preparation of all such chemicals. However, current production depends on indirect and inefficient, multi-step procedures. Here, we report a simple, effective ‘one-pot’ synthesis of a wide range of organic and inorganic monophosphorus species directly from P4. Reduction of P4 using tri-n-butyltin hydride and subsequent treatment with various electrophiles affords compounds that are of key importance for the chemical industry, and it requires only mild conditions and inexpensive, easily handled reagents. Crucially, we also demonstrate facile and efficient recycling and ultimately catalytic use of the tributyltin reagent, thereby avoiding the formation of substantial Sn-containing waste. Accessible, industrially relevant products include the fumigant PH3, the reducing agent hypophosphorous acid and the flame-retardant precursor tetrakis(hydroxymethyl)phosphonium chloride.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies for the transformation of P4 into monophosphorus products.
Fig. 2: Hydrostannylation of P4.
Fig. 3: Functionalization of phosphines (Bu3Sn)xPH3 − x and direct, ‘one-pot’ functionalization of P4.
Fig. 4: Further direct, ‘one-pot’ functionalization of P4.
Fig. 5: Recycling of the Bu3Sn moiety.
Fig. 6: Synthesis of THPC via in situ generation of Bu3SnH.
Fig. 7: Synthesis of THPC (17) via catalytic transformation of P4 into THP (16).

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information files.

References

  1. Gleason, W. An introduction to phosphorus: history, production and application. JOM 59, 17–19 (2007).

    Article  CAS  Google Scholar 

  2. Geeson, M. B. & Cummins, C. C. Let’s make white phosphorus obsolete. ACS Cent. Sci. 6, 848–860 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Geeson, M. B. & Cummins, C. C. Phosphoric acid as a precursor to chemicals traditionally synthesized from white phosphorus. Science 359, 1383–1385 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Geeson, M. B., Ríos, P., Transue, W. J. & Cummins, C. C. Orthophosphate and sulfate utilization for C–E (E=P, S) bond formation via trichlorosilyl phosphide and sulphide anions. J. Am. Chem. Soc. 141, 6375–6384 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Scholz, R. W., Roy, A. H., Brand, F. S., Hellums, D. & Ulrich, A. E. Sustainable Phosphorus Management (Springer, 2014)

  6. Ohtake, H. & Tsuneda, S. Phosphorus Recovery and Recycling (Springer, 2019).

  7. Corbridge, D. E. C. Phosphorus 2000. Chemistry, Biochemistry and Technology (Elsevier, 2000).

  8. Diskowski, H. & Hofmann, T. Phosphorus in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, 2000).

  9. Svara, J., Weferling, N. & Hofmann, T. Phosphorus compounds, organic in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, 2006).

  10. Bettermann, G., Krause, W., Riess, G. & Hofmann, T. Phosphorus compounds, inorganic in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, 2000).

  11. Cossairt, B. M., Piro, N. A. & Cummins, C. C. Early-transition-metal-mediated activation and transformation of white phosphorus. Chem. Rev. 110, 4164–4177 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Caporali, M., Gonsalvi, L., Rossin, A. & Peruzzini, M. P4 activation by late-transition metal complexes. Chem. Rev. 110, 4178–4235 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Scheer, M., Balázs, G. & Seitz, A. P4 activation by main group elements and compounds. Chem. Rev. 110, 4236–4256 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Xu, L., Chi, Y., Du, S., Zhang, W.-X. & Xi, Z. Direct synthesis of phospholyl lithium from white phosphorus. Angew. Chem. Int. Ed. 55, 9187–9190 (2016).

    Article  CAS  Google Scholar 

  15. Becker, G. et al. Tris(trimethylsilyl)phosphine and lithium bis(trimethylsilyl)phosphide bis(tetrahydrofuran). Inorg. Synth. 27, 243–349 (1990).

    CAS  Google Scholar 

  16. Bhattacharrya, K. X., Dreyfuss, S., Saffon-Merceron, N. & Mézailles, N. P4 functionalization by hydrides: direct synthesis of P–H bonds. Chem. Commun. 52, 5179–5182 (2016).

    Article  Google Scholar 

  17. Barton, D. H. R. & Zhu, J. Elemental white phosphorus as a radical trap: a new and general route to phosphonic acids. J. Am. Chem. Soc. 115, 2071–2072 (1993).

    Article  CAS  Google Scholar 

  18. Barton, D. H. R. & Embse, R. A. V. The invention of radical reactions. Part 39. The reaction of white phosphorus with carbon-centred radicals. An improved procedure for the synthesis of phosphonic acids and further mechanistic insights. Tetrahedron. 54, 12475–12496 (1998).

    Article  CAS  Google Scholar 

  19. Cossairt, B. M. & Cummins, C. C. Radical synthesis of trialkyl, triaryl, trisilyl and tristannyl phosphines from P4. New J. Chem. 34, 1533–1536 (2010).

    Article  CAS  Google Scholar 

  20. Ghosh, S. K., Cummins, C. C. & Gladysz, J. A. A direct route from white phosphorus and fluorous alkyl and aryl iodides to the corresponding trialkyl- and triarylphosphines. Org. Chem. Front. 5, 3421–3429 (2018).

    Article  CAS  Google Scholar 

  21. Lennert, U. et al. Direct catalytic transformation of white phosphorus into arylphosphines and phosphonium salts. Nat. Catal. 2, 1101–1106 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arockiam, P. B. et al. Versatile visible-light-driven synthesis of asymmetrical phosphines and phosphonium salts. Chem. Eur. J. 26, 16374–16382 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Lu, G. et al. Visible-light-mediated direct synthesis of phosphorotrithioates as potent anti-inflammatory agents from white phosphorus. Org. Chem. Front. 6, 190–194 (2019).

    Article  CAS  Google Scholar 

  24. Riesel, L., Kant, M. & Helbing, R. Zur Direktsynthese von Trialk(ar)ylphosphiten und Trithiophosphiten aus elementarem Phosphor. Z. Anorg. Allg. Chem. 580, 217–223 (1990).

    Article  CAS  Google Scholar 

  25. Mathiasch, B. & Dräger, M. Decamethyl-1λ3, 4λ3-diphospha-2,3,5,6,7-pentastannabicyclo[2.2.1]heptane, a bicyclic compound rich in tin. Angew. Chem. Int. Ed. 17, 767–768 (1978).

    Article  Google Scholar 

  26. Mathiasch, B. Pentakis(dimethylzinn)diphosphid, struktur und kernresonanzspektren eines zinnreichen bicyclus. J. Organomet. Chem. 165, 295–301 (1979).

    Article  CAS  Google Scholar 

  27. Dräger, M. & Mathiasch, B. Dodecamethyl-1λ3,4λ3-diphospha-2,3,5,6,7,8-hexastannabicyclo[2.2.2]octane, a highly symmetrical cage molecule. Angew. Chem. Int. Ed. 20, 1029–1030 (1981).

    Article  Google Scholar 

  28. Brenner, A. & Riddell, G. Nickel plating on steel by chemical reduction. J. Res. Natl Bur. Stand. 37, 31–34 (1946).

    Article  CAS  Google Scholar 

  29. Schmidbaur, H., Deschler, U., Milewski-Mahrla, B. & Zimmer-Gasser, B. Phosphonium‐benzylide und alkali‐[phosphoniumbis(benzylide)]: beispiele für salzfreie ylide und korrespondierende alkalikomplexe. Chem. Ber. 114, 608–619 (1981).

    Article  CAS  Google Scholar 

  30. Vullo, W. J. Hydroxymethyl replacement reactions of tetrakis(hydroxymethyl)phosphonium chloride. Ind. Eng. Chem. Proc. Res. Dev. 5, 346–349 (1966).

    CAS  Google Scholar 

  31. Kuivila, H. Reduction of organic compounds by organotin hydrides. Synthesis 1970, 499–509 (1970).

    Article  Google Scholar 

  32. Neumann, W. P. Tri-n-butyltin hydride as reagent in organic synthesis. Synthesis 1987, 665–683 (1987).

    Article  Google Scholar 

  33. Pereyre, M., Quintard, J.-P. & Rahm, A. Tin in Organic Synthesis (Butterworths, 1987).

  34. Rajanbabu, T. V., Bulman Page, P. C. & Buckley, B. R. Tri-n-butylstannane in Encyclopedia of Reagents for Organic Synthesis (Wiley, 2004).

  35. Cummins, C. C. et al. The stannylphosphide anion reagent sodium bis(triphenylstannyl) phosphide: synthesis, structural characterization, and reactions with indium, tin and gold electrophiles. Inorg. Chem. 53, 3678–3687 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Norman, A. D. The synthesis of (trimethylstannyl)phosphine: the observation of phosphorus-tin nuclear spin–spin coupling. J. Organometal. Chem. 28, 81–86 (1971).

    Article  CAS  Google Scholar 

  37. Schumann, H. Organogermyl, organostannyl, and organoplumbyl phosphines, arsines, stibines, and bismuthines. Angew. Chem. Int. Ed. 8, 937–950 (1969).

    Article  CAS  Google Scholar 

  38. Peruzzini, M., de los Rios, I., Romerosa, A. & Vizza, F. Metal-assisted P-H bond formation: a step towards the hydrogenation of white phosphorus. Eur. J. Inorg. Chem. 2001, 593–608 (2001).

    Article  Google Scholar 

  39. Gafurov, Z. N., Kagilev, A. A., Kantyukov, A. O., Sinyashin, O. G. & Yakharov, D. G. Hydrogenation reaction pathways in chemistry of white phosphorus. Pure Appl. Chem. 91, 797–810 (2019).

    Article  CAS  Google Scholar 

  40. Chanon, M. & Tobe, M. L. ETC: a mechanistic concept for inorganic and organic chemistry. Angew. Chem. Int. Ed. 21, 1–23 (1982).

    Article  Google Scholar 

  41. Chanon, K. Electron-transfer catalysis applied to organometallics. Part I. Application to the activation of Csp3-X bonds and other σ-bonded species. Bull. Soc. Chim. Fr. 1982, 197–238 (1982).

    Google Scholar 

  42. Julliard, M. & Chanon, M. Photoelectron-transfer catalysis: its connections with thermal and electrochemical analogues. Chem. Rev. 83, 425–506 (1983).

    Article  CAS  Google Scholar 

  43. Simpkins, N. S. Azobisisobutyronitrile in Encyclopedia of Reagents for Organic Synthesis (Wiley, 2001).

  44. Kates, S. A. & Albericio, F. 1,1′‐Azobis‐1‐cyclohexanenitrile in Encyclopedia of Reagents for Organic Synthesis (Wiley, 2001).

  45. Montanari, F. et al. 2,2,6,6‐Tetramethylpiperidin‐1‐oxyl in Encyclopedia of Reagents for Organic Synthesis (Wiley, 2016).

  46. Sato, A., Yorimitsu, H. & Oshima, K. Radical phosphination of organic halides and alkyl imidazole-1-carbothioates. J. Am. Chem. Soc. 128, 4240–4241 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Huber, A. et al. Phosphorus-functionalized bis(acyl)phosphane oxides for surface modification. Angew. Chem. Int. Ed. 51, 4648–4652 (2012).

    Article  CAS  Google Scholar 

  48. Becker, G., Rössler, M. & Uhl, W. Acyl- und alkylidenphosphane. XII. Synthese und eigenschaften des 2,2-dimethylpropionylphosphans und einiger derivate. Z. Anorg. Allg. Chem. 473, 7–19 (1981).

    Article  CAS  Google Scholar 

  49. Becker, G., Rössler, M. & Uhl, G. Acyl- und alkylidenphosphane. XX. Bis(2,2-dimethylpropionyl)phosphan und bis(2,2dimethylpropionyl)phosphide. Z. Anorg. Allg. Chem. 495, 73–88 (1982).

    Article  CAS  Google Scholar 

  50. Becker, G. Bildung und eigenschaften von acylphosphinen. II. Verbindungen aus der reaktion von tris(trimethylsilyl)phosphin mit pivaloylchlorid. Z. Anorg. Allg. Chem. 430, 66–76 (1977).

    Article  CAS  Google Scholar 

  51. Verlhac, J.-B. & Quintard, J.-P. N,N-dialkylaminomethyltributyltins as precursors of (N,N-dialkylaminomethyl) ketones. Tetrahedron Lett. 27, 2361–2364 (1986).

    Article  CAS  Google Scholar 

  52. Vaillard, S. E., Mück-Lichtenfeld, C., Grimme, S. & Studer, A. Homolytic substitution at phosphorus for the synthesis of alkyl and aryl phosphanes. Angew. Chem. Int. Ed. 46, 6533–6536 (2007).

    Article  CAS  Google Scholar 

  53. Borger, J. E., Ehlers, A. W., Slootweg, J. C. & Lammertsma, K. Functionalization of P4 through direct P–C bond formation. Chem. Eur. J. 23, 11738–11746 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Katti, K. V., Gali, H., Smith, C. J. & Berning, D. E. Design and development of functionalized water-soluble phosphines: catalytic and biomedical implications. Acc. Chem. Res. 32, 9–17 (1999).

    Article  CAS  Google Scholar 

  55. Chen, M.-J. et al. Inherently flame-retardant flexible polyurethane foam with a low content of phosphorus-containing cross-linking agent. Ind. Eng. Chem. Res. 53, 1160–1171 (2014).

    Article  CAS  Google Scholar 

  56. Akbayeva, D. N., Faisova, F. K. H., Abdreimova, R. R. & Peruzzini, M. Oxidation of white phosphorus by peroxides in aqueous and alcoholic solutions: mechanistic aspects and catalytic studies. J. Mol. Catal. A 267, 181–193 (2007).

    Article  CAS  Google Scholar 

  57. Le Grognec, E., Chrétien, J.-M., Zammattio, F. & Quintard, J.-P. Methodologies limiting or avoiding contamination by organotin residues in organic synthesis. Chem. Rev. 115, 10207–10260 (2015).

    Article  PubMed  Google Scholar 

  58. Tsangaris, J. M., Willem, R. & Gielen, M. in Patai’s Chemistry of Functional Groups (ed. Saul Patai) Ch. 10 (Wiley, 2009).

  59. Lawrence, N. J., Drew, M. D. & Bushell, S. M. Polymethylhydrosiloxane: a versatile reducing agent for organic synthesis. J. Chem. Soc. Perkin Trans. 1, 3381–3391 (1999).

    Article  Google Scholar 

  60. Hayashi, K., Iyoda, J. & Shiihara, I. Reaction of organotin oxides, alkoxides and acyloxides with organosilicon hydrides. New preparative method of organotin hydrides. J. Organomet. Chem. 10, 81–94 (1967).

    Article  CAS  Google Scholar 

  61. Lipowitz, J. & Bowman, S. A. Use of polymethylhydrosiloxane as a selective, neutral reducing agent for aldehydes, ketones, olefins and aromatic nitro compounds. J. Org. Chem. 38, 162–165 (1973).

    Article  CAS  Google Scholar 

  62. Barnard, J. H., Brown, P. A., Shuford, K. L. & Martin, C. D. 1,2-Phosphaborines: hybrid inorganic/organic P–B analogues of benzene. Angew. Chem. Int. Ed. 54, 12083–12086 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank O. Garcia Mancheño, K. Zeitler and J. J. Weigand for valuable discussions. Funding by the European Research Council (ERC CoG 772299) and the Alexander von Humboldt Foundation (postdoctoral fellowship for D.J.S.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

D.J.S. developed the hydrostannylation procedures, developed initial procedures for the formation of final products, and performed mechanistic studies. D.J.S. and J.C. optimized the synthesis, isolation and purification of products at increased scale, and the recovery and recycling of Bu3Sn-based by-products. D.J.S. and M.S. developed the catalytic synthesis of THPC. D.J.S. and R.W. conceived, oversaw and directed the project. D.J.S. prepared the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Daniel J. Scott or Robert Wolf.

Ethics declarations

Competing interests

A patent covering all of the results described herein has been filed (as of 13 February 2020) by the University of Regensburg (EP 20,157,197.3; inventors, D.J.S. and R.W.). The authors declare no other competing interests.

Additional information

Peer review information Nature Chemistry thanks Jean-Paul Quintard, Willem Schipper and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 1H NMR spectrum for the photoreaction of P4 with 6 equiv. Bu3SnH.

The reaction was performed in PhMe and driven by 455 nm LED irradiation for 18 hours prior to acquisition, as described in the Methods section. Solvent resonances are marked with an asterisk and are truncated for clarity. The inset shows an expansion of the doublet resonance with 117/119Sn satellites attributed to the PH moiety of (Bu3Sn)2PH (3).

Extended Data Fig. 2 31P{1H} NMR spectrum for the photoreaction of P4 with 6 equiv. Bu3SnH.

The reaction was performed in PhMe and driven by 455 nm LED irradiation for 18 hours prior to acquisition, as described in the Methods section. The insets show expansions of the signals attributed to Bu3SnPH2 (2) and (Bu3Sn)2PH (3), and to (Bu3Sn)3P (4), highlighting the presence of 117/119Sn satellites.

Extended Data Fig. 3 31P NMR spectrum for the photoreaction of P4 with 6 equiv. Bu3SnH.

The reaction was performed in PhMe and driven by 455 nm LED irradiation for 18 hours. In this case, the reaction was performed in a sealed NMR tube fitted with a J. Young valve (see Supplementary Method 16), to avoid loss of PH3 (1) during manipulation. The insets show expansions of the signals attributed to PH3 (1), and to Bu3SnPH2 (2) and (Bu3Sn)2PH (3), highlighting their multiplicity due to 1J(31P-1H) couplings.

Extended Data Fig. 4 119Sn{1H} NMR spectrum for the photoreaction of P4 with 6 equiv. Bu3SnH.

The reaction was performed in PhMe and driven by 455 nm LED irradiation for 18 hours prior to acquisition, as described in the Methods section. The inset highlights the doublets attributed to Bu3SnPH2 (2), (Bu3Sn)2PH (3) and (Bu3Sn)3P (4).

Extended Data Fig. 5 31P{1H} NMR spectra for the photoreaction of P4 with 6 equiv. Bu3SnH in various solvents.

Reactions were otherwise identical to the example given in the Methods section and were driven by 455 nm LED irradiation for 20 hours.

Extended Data Fig. 6 Proposed balanced, overall equations for the formation of [Bn4P]Br (14).

a, In the absence of KHMDS, formation of PH3 as a stoichiometric byproduct is proposed to occur. b, In the presence of KHMDS, 14 is proposed to be the only stoichiometric phosphorus-containing product.

Extended Data Fig. 7 A proposed, outline mechanism for the catalytic transformation of P4 into THPC (17) via THP (16).

Hydrostannylation of P4 by Bu3SnH is followed by insertion of formaldehyde into P–Sn and P–H bonds. Solvolysis of the resulting Sn–O bonds releases THP, which is transformed into THPC upon eventual quenching with HCl. This step also releases Bu3SnOEt which can react with PMHS to regenerate Bu3SnH and thereby close the catalytic cycle.

Supplementary information

Supplementary Information

Characterization data, Supplementary Methods 1–42, Figs. 1–139 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scott, D.J., Cammarata, J., Schimpf, M. et al. Synthesis of monophosphines directly from white phosphorus. Nat. Chem. 13, 458–464 (2021). https://doi.org/10.1038/s41557-021-00657-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00657-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing