Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vibrational coherences in manganese single-molecule magnets after ultrafast photoexcitation


Magnetic recording using femtosecond laser pulses has recently been achieved in some dielectric media, showing potential for ultrafast data storage applications. Single-molecule magnets (SMMs) are metal complexes with two degenerate magnetic ground states and are promising for increasing storage density, but remain unexplored using ultrafast techniques. Here we have explored the dynamics occurring after photoexcitation of a trinuclear µ3-oxo-bridged Mn(iii)-based SMM, whose magnetic anisotropy is closely related to the Jahn–Teller distortion. Ultrafast transient absorption spectroscopy in solution reveals oscillations superimposed on the decay traces due to a vibrational wavepacket. Based on complementary measurements and calculations on the monomer Mn(acac)3, we conclude that the wavepacket motion in the trinuclear SMM is constrained along the Jahn–Teller axis due to the µ3-oxo and µ-oxime bridges. Our results provide new possibilities for optical control of the magnetization in SMMs on femtosecond timescales and open up new molecular-design challenges to control the wavepacket motion in the excited state of polynuclear transition-metal complexes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The structures of JT-distorted Mn(iii) complexes.
Fig. 2: Electronic absorption spectra of Mn(acac)3 and Mn3.
Fig. 3: Ultrafast transient absorption spectra of Mn(acac)3 and Mn3.
Fig. 4: Kinetic traces of Mn(acac)3 and Mn3.
Fig. 5: Analysis of vibrational wavepacket.
Fig. 6: Photophysical model of the Mn(acac)3 dynamics and wavepacket motion in Mn3.

Data availability

The raw transient absorption data (including the anisotropy measurements), Raman and ultraviolet–visible spectra, and computational data that support the findings of this study are available in the Edinburgh DataShare repository with the identifier


  1. 1.

    Christou, G., Gatteschi, D., Hendrickson, D. N. & Sessoli, R. Single-molecule magnets. MRS Bull. 25, 66–71 (2000).

    CAS  Article  Google Scholar 

  2. 2.

    Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater. 7, 179–186 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    Stupakiewicz, A., Szerenos, K., Afanasiev, D., Kirilyuk, A. & Kimel, A. V. Ultrafast nonthermal photo-magnetic recording in a transparent medium. Nature 542, 71–74 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Monat, J. E. & McCusker, J. K. Femtosecond excited-state dynamics of an iron(ii) polypyridyl solar cell sensitizer model. J. Am. Chem. Soc. 122, 4092–4097 (2000).

    CAS  Article  Google Scholar 

  5. 5.

    Auböck, G. & Chergui, M. Sub-50-fs photoinduced spin crossover in [Fe(bpy)3]2+. Nat. Chem. 7, 629–633 (2015).

    Article  Google Scholar 

  6. 6.

    Lemke, H. T. et al. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching. Nat. Commun. 8, 15342 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Zerdane, S. et al. Comparison of structural dynamics and coherence of dd and MLCT light-induced spin state trapping. Chem. Sci. 8, 4978–4986 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Consani, C. et al. Vibrational coherences and relaxation in the high-spin state of aqueous [Fe II(bpy)3]2+. Angew. Chemie Int. Ed. 48, 7184–7187 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    Juban, E. A. & McCusker, J. K. Ultrafast dynamics of 2E state formation in Cr(acac)3. J. Am. Chem. Soc. 127, 6857–6865 (2005).

    CAS  Article  Google Scholar 

  10. 10.

    Schrauben, J. N., Dillman, K. L., Beck, W. F. & McCusker, J. K. Vibrational coherence in the excited state dynamics of Cr(acac)3: probing the reaction coordinate for ultrafast intersystem crossing. Chem. Sci. 1, 405–410 (2010).

    Article  Google Scholar 

  11. 11.

    Kamioka, H., Moritomo, Y., Kosaka, W. & Ohkoshi, S. Dynamics of charge-transfer pairs in the cyano-bridged Co2+–Fe3+ transition-metal compound. Phys. Rev. B 77, 180301 (2008).

    Article  Google Scholar 

  12. 12.

    Asahara, A. et al. Ultrafast dynamics of reversible photoinduced phase transitions in rubidium manganese hexacyanoferrate investigated by midinfrared CN vibration spectroscopy. Phys. Rev. B 86, 195138 (2012).

    Article  Google Scholar 

  13. 13.

    Johansson, J. O. et al. Directly probing spin dynamics in a molecular magnet with femtosecond time-resolution. Chem. Sci. 7, 7061–7067 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Dong, X., Lorenc, M., Tretyakov, E. V., Ovcharenko, V. I. & Fedin, M. V. Light-induced spin state switching in copper(ii)-nitroxide-based molecular magnet at room temperature. J. Phys. Chem. Lett. 8, 5587–5592 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Baniodeh, A. et al. Unraveling the influence of lanthanide ions on intra- and inter-molecular electronic processes in Fe10Ln10 nano-toruses. Adv. Funct. Mater. 24, 6280–6290 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    Caneschi, A. et al. Alternating current susceptibility, high field magnetization, and millimeter band EPR evidence for a ground S = 10 state in [Mn12O12(Ch3COO)16(H2O)4].2CH3COOH.4H2O. J. Am. Chem. Soc. 113, 5873–5874 (1991).

    CAS  Article  Google Scholar 

  17. 17.

    Sessoli, R. et al. High-spin molecules: [Mn12O12(O2CR)16(H2O)4]. J. Am. Chem. Soc. 115, 1804–1816 (1993).

    CAS  Article  Google Scholar 

  18. 18.

    Parois, P. et al. Pressure-induced Jahn–Teller switching in a Mn12 nanomagnet. Chem. Commun. 46, 1881–1883 (2010).

    Article  Google Scholar 

  19. 19.

    Kaszub, W. et al. Ultrafast photoswitching in a copper-nitroxide-based molecular magnet. Angew. Chemie Int. Ed. 53, 10636–10640 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Inglis, R. et al. Twisting, bending, stretching: strategies for making ferromagnetic [MnIII 3] triangles. Dalt. Trans. 2009, 9157–9168 (2009).

  21. 21.

    Bradley, J. M. et al. MCD spectroscopy of hexanuclear Mn(iii) salicylaldoxime single-molecule magnets. Dalton Trans. 39, 9904–9911 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    Carlotto, S. et al. The electronic properties of three popular high spin complexes [TM(acac)3, TM = Cr, Mn, and Fe] revisited: an experimental and theoretical study. Phys. Chem. Chem. Phys. 19, 24840–24854 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Davis, T. S., Fackler, J. P. & Weeks, M. J. Spectra of manganese(iii) complexes. The origin of the low-energy band. Inorg. Chem. 7, 1994–2002 (1968).

    CAS  Article  Google Scholar 

  24. 24.

    Krzystek, J. et al. High-frequency and -field EPR spectroscopy of tris(2,4-pentanedionato)manganese(iii): investigation of solid-state versus solution Jahn–Teller effects. Inorg. Chem. 42, 4610–4618 (2003).

    CAS  Article  Google Scholar 

  25. 25.

    Snellenburg, J. J., Laptenok, S. P., Seger, R., Mullen, K. M. & Stokkum, I. H. Mvan Glotaran: a Java-based graphical user interface for the R Package TIMP. J. Stat. Softw. 49, 1–22 (2012).

    Article  Google Scholar 

  26. 26.

    Maçôas, E. M. S., Kananavicius, R., Myllyperkiö, P., Pettersson, M. & Kunttu, H. Ultrafast electronic and vibrational energy relaxation of Fe(acetylacetonate)3 in solution. J. Phys. Chem. A 111, 2054–2061 (2007).

    Article  Google Scholar 

  27. 27.

    Beaud, P. et al. Ultrafast structural phase transition driven by photoinduced melting of charge and orbital order. Phys. Rev. Lett. 103, 155702 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    Yeh, A. T., Shank, C. V. & McCusker, J. K. Dynamics following photo-induced charge transfer. Science 289, 935–938 (2000).

    CAS  Article  Google Scholar 

  29. 29.

    Wallin, S., Davidsson, J., Modin, J. & Hammarström, L. Femtosecond transient absorption anisotropy study on [Ru(bpy)3]2+ and [Ru(bpy)(py)4]2+ ultrafast interligand randomization of the MLCT state. J. Phys. Chem. A 109, 4697–4704 (2005).

    CAS  Article  Google Scholar 

  30. 30.

    Milios, C. J. et al. A record anisotropy barrier for a single-molecule magnet. J. Am. Chem. Soc. 129, 2754–2755 (2007).

    CAS  Article  Google Scholar 

  31. 31.

    Scholes, G. D. et al. Using coherence to enhance function in chemical and biophysical systems. Nature 543, 647–656 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Cho, S. et al. Coherence in metal−metal-to-ligand-charge-transfer excited states of a dimetallic complex investigated by ultrafast transient absorption anisotropy. J. Phys. Chem. A 115, 3990–3996 (2011).

    CAS  Article  Google Scholar 

  33. 33.

    Iwamura, M., Takeuchi, S. & Tahara, T. Ultrafast excited-state dynamics of copper(i) complexes. Acc. Chem. Res. 48, 782–791 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    North, J., van de Burgt, L. & Dalal, N. A Raman study of the single molecule magnet Mn12-acetate and analogs. Solid State Commun. 123, 75–79 (2002).

    CAS  Article  Google Scholar 

  35. 35.

    Rivière, E. et al. Magneto-optical control of a Mn12 nano-magnet. J. Mater. Chem. 20, 7165–7168 (2010).

    Article  Google Scholar 

  36. 36.

    Milios, C. J. et al. Toward a magnetostructural correlation for a family of Mn6 SMMs. J. Am. Chem. Soc. 129, 12505–12511 (2007).

    CAS  Article  Google Scholar 

  37. 37.

    Megerle, U., Pugliesi, I., Schriever, C., Sailer, C. F. & Riedle, E. Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground. Appl. Phys. B 96, 215–231 (2009).

    CAS  Article  Google Scholar 

Download references


This work was supported by funding from the Royal Society of Edinburgh and the Carnegie Trust (Collaborative Research Grant). The authors thank M. D. Horbury and V. Stavros for allowing us to carry out preliminary measurements in their laboratory and for their assistance with these measurements. F.L. and J.O.J. thank A. Gromov for the help with the Raman spectrometer and E. Riedle for helpful advice with building the transient absorption set-up. J.O.J. is a Royal Society of Edinburgh/BP Trust research fellow. E.K.B. thanks the EPSRC for grants EP/P025986/1 and EP/N01331X/1. T.J.P. and J.E. thank the EPSRC for grants EP/R021503/1 and EP/P012388/1.

Author information




F.L. performed the optical experiments and analysed the data and R.McN synthesized and characterized the samples under the supervision of R.I. and E.K.B. J.E. and T.J.P. carried out the calculations. F.L., E.K.B. and J.O.J. conceived the experiments and interpreted the results. F.L. and J.O.J. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to J. Olof Johansson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Computational Methods, Tables 1–3, Figs. 1–11 and Data.

Supplementary Video 1

Video of the vibrational mode giving rise to the wavepacket in Mn3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liedy, F., Eng, J., McNab, R. et al. Vibrational coherences in manganese single-molecule magnets after ultrafast photoexcitation. Nat. Chem. 12, 452–458 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing