Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dipolar order in an amphidynamic crystalline metal–organic framework through reorienting linkers

Abstract

Amphidynamic crystals, which possess crystallinity and support dynamic behaviours, are very well suited to the exploration of emergent phenomena that result from the coupling on the dynamic moieties. Here, dipolar rotors have been embedded in a crystalline metal–organic framework. The material consists of Zn(ii) nodes and two types of ditopic bicyclo[2.2.2]octane-based linkers—one that coordinates to the Zn clusters through two 1,4-aza moieties, and a difluoro-functionalized derivative (the dipolar rotor) that coordinates through linked 1,4-dicarboxylate groups instead. Upon cooling, these linkers collectively order as a result of correlated dipole–dipole interactions. Variable-temperature, frequency-dependent dielectric measurements revealed a transition temperature Tc = 100 K, when a rapidly rotating, dipole-disordered, paraelectric phase transformed into an ordered, antiferroelectric one in which the dipole moments of the rotating linkers largely cancelled each other. Monte Carlo simulations on a two-dimensional rotary lattice showed a ground state with an Ising symmetry and the effects of dipole–lattice and dipole–dipole interactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Spontaneous broken symmetry on dipolar lattices, and the proposed manifestation in (F2-BODCA)-MOF.
Fig. 2: Structural elements of the crystal and rotator.
Fig. 3: Complex dielectric response of (F2-BODCA)-MOF.
Fig. 4: Temperature dependence of dynamical time scale of (F2-BODCA)-MOF, extracted from dielectric and NMR measurements.
Fig. 5: Results of DFT calculations.
Fig. 6: Results of Monte Carlo simulation.

Data availability

The data that support the findings of this study can be accessed at https://www.pa.ucla.edu/content/crystalline-dipolar-rotors.html. Additional information is available from the corresponding authors upon reasonable request. Crystallographic data for the structure of (F2-BODCA)-MOF reported in this Article have been deposited at the Cambridge Crystallographic Data Centre under deposition number CCDC 2034730. Source data are provided with this paper.

Code availability

The code that supports the findings of this study can be accessed at https://github.com/andrewstanton1/Metropolis-Algorithm-for-rotor-lattice.

References

  1. 1.

    Kottas, G. S., Clarke, L. I., Horinek, D. & Michl, J. Artificial molecular rotors. Chem. Rev. 105, 1281–1376 (2005).

    CAS  Article  Google Scholar 

  2. 2.

    Rozenbaum, V. M. Long-range orientational order in a two-dimensional degenerate system of dipoles on a square lattice. JETP Lett. 63, 662–667 (1996).

    Article  Google Scholar 

  3. 3.

    Adams, D. Calculating the low temperature vapour line by Monte Carlo. Mol. Phys. 32, 647–657 (1976).

    CAS  Article  Google Scholar 

  4. 4.

    Vogelsberg, C. S. & Garcia-Garibay, M. A. Crystalline molecular machines: function, phase order, dimensionality, and composition. Chem. Soc. Rev. 41, 1892–1910 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    DeLeeuw, S. W., Solvaeson, D., Ratner, M. A. & Michl, J. Molecular dipole chains: excitations and dissipation. J. Phys. Chem. B 102, 3876–3885 (1998).

    CAS  Article  Google Scholar 

  6. 6.

    Sim, E., Ratner, M. A. & de Leeuw, S. W. Molecular dipole chains II. J. Phys. Chem. B 103, 8663–8670 (1999).

    CAS  Article  Google Scholar 

  7. 7.

    De Jonge, J. J., Ratner, M. A., de Leeuw, S. W. & Simonis, R. O. Molecular dipole chains III: energy transfer. J. Phys. Chem. B 108, 2666–2675 (2004).

    CAS  Article  Google Scholar 

  8. 8.

    Vacek, J. & Michl, J. Molecular dynamics of a grid-mounted molecular dipolar rotor in a rotating electric field. Proc. Natl Acad. Sci. USA 98, 5481–5486 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    Vacek, J. & Michl, J. Artificial surface-mounted molecular rotors: molecular dynamics simulations. Adv. Funct. Mater. 17, 730–739 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    Neumann, J., Gottschalk, K. E. & Astumian, R. D. Driving and controlling molecular surface rotors with a terahertz electric field. ACS Nano 6, 5242–5248 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Garcia-Garibay, M. A. Crystalline molecular machines: encoding supramolecular dynamics into molecular structure. Proc. Natl Acad. Sci. USA 102, 10771–10776 (2005).

    CAS  Article  Google Scholar 

  12. 12.

    Khuong, T.-A. V., Nuñez, J. E., Godinez, C. E. & Garcia-Garibay, M. A. Crystalline molecular machines: a quest toward solid-state dynamics and function. Acc. Chem. Res. 39, 413–422 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    Howe, M. E. & Garcia-Garibay, M. A. The roles of intrinsic barriers and crystal fluidity in determining the dynamics of crystalline molecular rotors and molecular machines. J. Org. Chem. 84, 9835–9849 (2019).

    CAS  Article  Google Scholar 

  14. 14.

    Shima, T., Hampel, F. & Gladysz, J. A. Molecular gyroscopes: {Fe(CO)3} and {Fe(CO)2(NO)}+ rotators encased in three‐spoke stators; facile assembly by alkene metatheses. Angew. Chem. Int. Ed. 43, 5537–5540 (2004).

    CAS  Article  Google Scholar 

  15. 15.

    Akutagawa, T. et al. Ferroelectricity and polarity control in solid-state flip-flop supramolecular rotators. Nat. Mater. 8, 342–347 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    Setaka, W. & Yamaguchi, K. A molecular balloon: expansion of a molecular gyrotop cage due to rotation of the phenylene rotor. J. Am. Chem. Soc. 134, 12458–12461 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Setaka, W. & Yamaguchi, K. Order–disorder transition of dipolar rotor in a crystalline molecular gyrotop and its optical change. J. Am. Chem. Soc. 135, 14560–14563 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    Comotti, A. et al. Engineering switchable rotors in molecular crystals with open porosity. J. Am. Chem. Soc. 136, 618–621 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Yao, Z.-S., Yamamoto, K., Cai, H.-L., Takahashi, K. & Sato, O. Above room temperature organic ferroelectrics: diprotonated 1,4-diazabicyclo[2.2.2]octane shifts between two 2-chlorobenzoates. J. Am. Chem. Soc. 138, 12005–12008 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Bracco, S. et al. Ultrafast molecular rotors and their CO2 tuning in MOFs with rod‐like ligands. Chemistry 23, 11210–11215 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Vogelsberg, C. S. et al. Ultrafast rotation in an amphidynamic crystalline metal organic framework. Proc. Natl Acad. Sci. USA 114, 13613–13618 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Horansky, R. D. et al. Dielectric response of a dipolar molecular rotor crystal. Phys. Rev. B 72, 014302 (2005).

    Article  Google Scholar 

  23. 23.

    Dominguez, Z. et al. Molecular compasses and gyroscopes with polar rotors: synthesis and characterization of crystalline forms. J. Am. Chem. Soc. 125, 8827–8837 (2003).

    CAS  Article  Google Scholar 

  24. 24.

    Frisch, M. et al. Gaussian 09, Revision D.01 (Gaussian, 2009).

  25. 25.

    Böttcher, C. J. F. Theory of Electric Polarization (Elsevier, 1952).

  26. 26.

    Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the National Science Foundation under grant numbers DMR-2004553, DMR-1709304, DMR-1700471 and MRI-1532232 (solid-state NMR).

Author information

Affiliations

Authors

Contributions

S.P.-E. and M.A.G.-G. conceived of the material synthesis, and S.P.-E. and T.Y.C. synthesized the samples. M.A.G.-G., S.P.-E. and S.E.B. conceived of the dielectric measurement, E.S.L. and P.G. built the capacitance measurement probe, E.S.L. carried out the measurement, and Y.-S.S. and S.E.B. analysed the results. Y.-S.S. implemented the cryogenic NMR measurements. A.L.S. constructed the Monte Carlo code from scratch and executed the simulation with the guidance of Y.-S.S., A.C. and S.E.B. I.L. and K.N.H. performed the DFT calculations. I.L. wrote about DFT and materials synthesis. Y.-S.S. and S.E.B. coordinated the concerted efforts. Y.-S.S., S.E.B. and M.A.G.-G. wrote the manuscript with contributions from all the other authors.

Corresponding authors

Correspondence to Y.-S. Su or I. Liepuoniute or M. A. Garcia-Garibay or S. E. Brown.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–34 and Discussion.

Supplementary Data 1

Crystallographic data for (F2-BODCA)-MOF.

Source data

Source Data Fig. 3

Statistical Source Data.

Source Data Fig. 4

Statistical Source Data.

Source Data Fig. 5

Statistical Source Data.

Source Data Fig. 6

Statistical Source Data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Su, YS., Lamb, E.S., Liepuoniute, I. et al. Dipolar order in an amphidynamic crystalline metal–organic framework through reorienting linkers. Nat. Chem. 13, 278–283 (2021). https://doi.org/10.1038/s41557-020-00618-6

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing