Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Isolable dicarbon stabilized by a single phosphine ligand

Abstract

In contrast to naturally occurring F2, O2 and N2, diatomic C2 is an intriguing species that has only been observed indirectly in the gas phase, and because of its high reactivity has eluded isolation in the condensed phase. It has previously been stabilized in L→C2←L compounds but the bonding situation of the central C2 in this motif differs remarkably from that of free C2. Here we have prepared and structurally characterized diatomic C2 as a monoligated complex L→C2 using a bulky phosphine ligand bearing two imidazolidin-2-iminato groups (L is (NHCR=N)2(CH3)P, where NHCR is an N-heterocyclic carbene). The compound is stable in solution at ambient temperature and has also been isolated in the solid state. Reactivity studies, in combination with quantum chemical analysis, suggest that the two carbon atoms of the L→C2 complex both have carbene character. The complex underwent intermolecular C–H bond activation upon thermolysis and exhibited hydroalkoxylation-like reactivity with methanol.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: C2 chemistry.
Fig. 2: Single-crystal X-ray diffraction experiment for structural elucidation.
Fig. 3: Theoretical analysis of the electronic structure of 3.
Fig. 4: Reactivity studies of 3.
Fig. 5: Computational calculation on the thermolysis reaction pathway of dicarbon 3.

Data availability

Crystallographic data for the structures in this paper have been deposited at the Cambridge Crystallographic Data Centre under reference numbers 1993538 (2), 1993539 (6), 1993540 (4), 1993541 (3) and 1993542 (5). Copies of the data can be obtained free of charge from www.ccdc.cam.ac.uk/structures/. All other data supporting the findings of this study are available within the article and its Supplementary Information, or from the corresponding authors upon reasonable request.

References

  1. 1.

    Skell, P. S. & Harris, R. F. Some chemistry of the C2 molecule. J. Am. Chem. Soc. 88, 5933–5934 (1966).

    CAS  Article  Google Scholar 

  2. 2.

    Skell, P. S. & Plonka, J. H. Chemistry of the singlet and triplet C2 molecules. Mechanism of acetylene formation from reaction with acetone and acetaldehyde. J. Am. Chem. Soc. 92, 5620–5624 (1970).

    CAS  Article  Google Scholar 

  3. 3.

    Swan, W. On the prismatic spectra of the flames of compounds of carbon and hydrogen. Trans. R. Soc. Edinb. 21, 411–430 (1857).

    Article  Google Scholar 

  4. 4.

    Kopfermann, H. & Schweitzer, H. A band system of diatomic carbon vapour. Z. Phys. 61, 87–94 (1930).

    CAS  Article  Google Scholar 

  5. 5.

    Danovich, D., Hiberty, P. C., Wu, W., Rzepa, H. S. & Shaik, S. The nature of the fourth bond in the ground state of C2: the quadruple bond conundrum. Chem. Eur. J. 20, 6220–6232 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    Hermann, M. & Frenking, G. The chemical bond in C2. Chem. Eur. J. 22, 4100–4108 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Shaik, S., Danovich, D., Braida, B. & Hiberty, P. C. The quadruple bonding in C2 reproduces the properties of the molecule. Chem. Eur. J. 22, 4116–4128 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Frenking, G. & Hermann, M. Comment on ‘the quadruple bonding in C2 reproduces the properties of the molecule’. Chem. Eur. J. 22, 18975–18976 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Shaik, S., Danovich, D., Braida, B. & Hiberty, P. C. A response to a comment by G. Frenking and M. Hermann on: ‘the quadruple bonding in C2 reproduces the properties of the molecule’. Chem. Eur. J. 22, 18977–18980 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Li, Y. et al. C4 cumulene and the corresponding air-stable radical cation and dication. Angew. Chem. Int. Ed. 53, 4168–4172 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Jin, L., Melaimi, M., Liu, L. & Bertrand, G. Singlet carbenes as mimics for transition metals: synthesis of an air stable organic mixed valence compound [M2(C2); M = cyclic(alkyl)(amino)carbene]. Org. Chem. Front. 1, 351–354 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Wu, D., Li, Y., Gangulyb, R. & Kinjo, R. Synthesis and structural characterization of a C4 cumulene including 4-pyridylidene units, and its reactivity towards ammonia-borane. Chem. Commun. 50, 12378–12381 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Georgiou, D. C. et al. The fate of NHC-stabilized dicarbon. Chem. Eur. J. 21, 3377–3386 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Wang, Y. et al. A stable silicon(0) compound with a Si=Si double bond. Science 321, 1069–1071 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    Sidiropoulos, A., Jones, C., Stasch, A., Klein, S. & Frenking, G. N-Heterocyclic carbene stabilized digermanium(0). Angew. Chem. Int. Ed. 48, 9701–9704 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    Jones, C., Sidiropoulos, A., Holzmann, N., Frenking, G. & Stasch, A. An N-heterocyclic carbene adduct of diatomic tin, :Sn=Sn. Chem. Commun. 48, 9855–9857 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Bestmann, H.-J. et al. Triphenylphosphonioacetylide: a species isoelectronic with isocyanides. Angew. Chem. Int. Ed. 37, 338–342 (1998).

    CAS  Article  Google Scholar 

  18. 18.

    Goldberg, S. Z., Duesler, E. N & Raymond, K. N. Crystal and molecular structure of [Mn(CO)4(C2PPh3)Br]—a co-ordination compound of the unsual carbonyl-ylide product, Ph3P+–C≡C:–. Chem. Commun. 826–827 (1971).

  19. 19.

    Asay, M., Donnadieu, B., Schoeller, W. W. & Bertrand, G. Synthesis of allenylidene lithium and silver complexes, and subsequent transmetalation reactions. Angew. Chem. Int. Ed. 48, 4796–4799 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    Wu, X. & Tamm, M. Transition metal complexes supported by highly basic imidazolin-2-iminato and imidazolin-2-imine N-donor ligands. Coord. Chem. Rev. 260, 116–138 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Ochiai, T., Franz, D. & Inoue, S. Applications of N-heterocyclic imines in main group chemistry. Chem. Soc. Rev. 45, 6327–6344 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Dielmann, F. et al. A crystalline singlet phosphinonitrene: a nitrogen atom-transfer agent. Science 337, 1526–1528 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Jacobsen, N. E. NMR Spectroscopy Explained: Simplified Theory, Applications and Examples for Organic Chemistry and Structural Biology (John Wiley, 2007).

  24. 24.

    Chivers, T., Doxsee, D. D., Fait, J. F. & Parvez, M. Preparation and solid-state isomerization of Se,Se′-dialkyltetraphenyldiphosphadiselenatetrazocines: X-ray structures of 1,5-Ph4P2N4Se2Me2 and [Ph2P(NH2)2]2Se. Inorg. Chem. 32, 2243–2248 (1993).

    CAS  Article  Google Scholar 

  25. 25.

    Huber, K.P. & Herzberg, G. Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand-Reinhold, 1990).

  26. 26.

    Weast, R. C., Astle, M. J. & Beyer, W. H. CRC Handbook of Chemistry and Physics 65th edn (CRC Press, 1984).

  27. 27.

    Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts 3rd edn (John Wiley, 2004).

  28. 28.

    Haaland, A. Covalent versus dative bonds to main group metals, a useful distinction. Angew. Chem., Int. Ed. 28, 992–1007 (1989).

    Article  Google Scholar 

  29. 29.

    Zhao, L., Hermann, M., Holzmann, N. & Frenking, G. Dative bonding in main group compounds. Coord. Chem. Rev. 344, 163–204 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Michalak, A., Mitoraj, M. & Ziegler, T. J. Bond orbitals from chemical valence theory. Phys. Chem. A. 112, 1933–1939 (2008).

    CAS  Article  Google Scholar 

  31. 31.

    Zhao, L., Hermann, M., Schwarz, W. H. E. & Frenking, G. The Lewis electron-pair bonding model: modern energy decomposition analysis. Nat. Chem. Rev. 3, 48–63 (2019).

    CAS  Article  Google Scholar 

  32. 32.

    Weinstein, C. M. et al. Highly ambiphilic room temperature stable six-membered cyclic (alkyl)(amino)carbenes. J. Am. Chem. Soc. 140, 9255–9260 (2018).

    CAS  Article  Google Scholar 

  33. 33.

    Chan, Y.-C. et al. A dimeric NHC–silicon monotelluride: synthesis, isomerization, and reactivity. Angew. Chem. Int. Ed. 38, 11723–11727 (2017).

    Article  Google Scholar 

  34. 34.

    Wünsche, M. A. et al. Imidazol-2-ylidenaminophosphines as highly electron-rich ligands for transition-metal catalysts. Angew. Chem. Int. Ed. 54, 11857–11860 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Ministry of Science & Technology of Taiwan (108-2113-M-001-026-MY3), an Academia Sinica Investigator Award Grant (AS-IA-108-M04), the National Natural Science Foundation of China (grant numbers 21703099, 21973044 and 21828101), the Natural Science Foundation of Jiangsu Province for Youth (grant number BK20170964) and Nanjing Tech University (grant numbers 39837123 and 39837132). We are grateful to the High-Performance Computing Center of Nanjing Tech University for supporting the computational resources. T.Y. acknowledges financial support from the Alexander von Humboldt foundation. Further support came from the Deutsche Forschungsgemeinschaft.

Author information

Affiliations

Authors

Contributions

T.-F.L. conceived the study. T.-F.L. and M.-C.W. performed and studied experiments. W.-M.C. assisted with the infrared measurements. D.J., D.X. and T.Y. carried out computational calculations. G.P.A.Y. did the crystallographic work. T.-F.L., D.J. and M.-C.W. contributed equally to the work and all authors contributed to data analysis. T.-G.O, L.Z. and G.F. supervised research and acquired funding. T.-F.L. and T.-G.O. wrote the original draft, which was reviewed and edited with input from all authors.

Corresponding authors

Correspondence to Lili Zhao, Tiow-Gan Ong or Gernot Frenking.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leung, TF., Jiang, D., Wu, MC. et al. Isolable dicarbon stabilized by a single phosphine ligand. Nat. Chem. 13, 89–93 (2021). https://doi.org/10.1038/s41557-020-00579-w

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing