Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Determining the nature of quantum resonances by probing elastic and reactive scattering in cold collisions


Scattering resonances play a central role in collision processes in physics and chemistry. They help build an intuitive understanding of the collision dynamics due to the spatial localization of the scattering wavefunctions. For resonances that are localized in the reaction region, located at short separation behind the centrifugal barrier, sharp peaks in the reaction rates are the characteristic signature, observed recently with state-of-the-art experiments in low-energy collisions. If, however, the localization occurs outside of the reaction region, mostly the elastic scattering is modified. This may occur due to above-barrier resonances, the quantum analogue of classical orbiting. By probing both elastic and inelastic scattering of metastable helium with deuterium molecules in merged-beam experiments, we differentiate between the nature of quantum resonances—tunnelling resonances versus above-barrier resonances—and corroborate our findings by calculating the corresponding scattering wavefunctions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Experimental set-up.
Fig. 2: VMI images and angular distributions.
Fig. 3: Relative rate coefficients versus collision energies for elastic scattering and Penning ionization of He*−D2.
Fig. 4: Partial wave analysis.
Fig. 5: Characterization of resonances.

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request. Source Data for Fig. 3 is provided with the paper.


  1. 1.

    Friedrich, H. Scattering Theory 2nd edn (Springer, 2016).

  2. 2.

    Császár, A. G. et al. Rotational–vibrational resonance states. Phys. Chem. Chem. Phys. 22, 15081–15104 (2020).

  3. 3.

    Feshbach, H. Unified theory of nuclear reactions. Ann. Phys. 5, 357–390 (1958).

    CAS  Article  Google Scholar 

  4. 4.

    Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    CAS  Article  Google Scholar 

  5. 5.

    Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    Yang, H. et al. Observation of magnetically tunable Feshbach resonances in ultracold 23Na40K + 40K collisions. Science 363, 261–264 (2019).

    CAS  Article  Google Scholar 

  7. 7.

    Clary, D. C. & Henshaw, J. P. Chemical reactions dominated by long-range intermolecular forces. Faraday Discuss. Chem. Soc. 84, 333–349 (1987).

    CAS  Article  Google Scholar 

  8. 8.

    Quéméner, G. & Julienne, P. S. Ultracold molecules under control! Chem. Rev. 112, 4949–5011 (2012).

    Article  Google Scholar 

  9. 9.

    Schutte, A., Bassi, D., Tommasini, F. & Scoles, G. Orbiting resonances in the scattering of H atoms by mercury at thermal energies. Phys. Rev. Lett. 29, 979–982 (1972).

    CAS  Article  Google Scholar 

  10. 10.

    Toennies, J. P., Welz, W. & Wolf, G. Observation of orbiting resonances in the integral cross section of H–Xe. J. Chem. Phys. 61, 2461–2462 (1974).

    CAS  Article  Google Scholar 

  11. 11.

    Toennies, J. P., Welz, W. & Wolf, G. Observation of orbiting resonances in H2–rare gas scattering. J. Chem. Phys. 64, 5305–5307 (1976).

    CAS  Article  Google Scholar 

  12. 12.

    Grover, J. R., Toennies, J. P., Welz, W. & Wolf, G. The observation of resonance maxima in H + CF4 and H + SF6 scattering. Chem. Phys. Lett. 48, 24–28 (1977).

    CAS  Article  Google Scholar 

  13. 13.

    Toennies, J. P., Welz, W. & Wolf, G. Molecular beam scattering studies of orbiting resonances and the determination of van der Waals potentials for H–Ne, Ar, Kr, and Xe and for H2–Ar, Kr, and Xe. J. Chem. Phys. 71, 614–642 (1979).

    CAS  Article  Google Scholar 

  14. 14.

    Boesten, H. M. J. M., Tsai, C. C., Verhaar, B. J. & Heinzen, D. J. Observation of a shape resonance in cold-atom scattering by pulsed photoassociation. Phys. Rev. Lett. 77, 5194–5197 (1996).

    CAS  Article  Google Scholar 

  15. 15.

    Skodje, R. T. et al. Observation of a transition state resonance in the integral cross section of the F + HD reaction. J. Chem. Phys. 112, 4536–4552 (2000).

    CAS  Article  Google Scholar 

  16. 16.

    Qiu, M. et al. Observation of Feshbach resonances in the F + H2 → HF + H reaction. Science 311, 1440–1444 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    Manolopoulos, D. E. et al. The transition state of the F + H2 reaction. Science 262, 1852–1855 (1993).

    CAS  Article  Google Scholar 

  18. 18.

    Kim, J. B. et al. Spectroscopic observation of resonances in the F + H2 reaction. Science 349, 510–513 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Henson, A. B., Gersten, S., Shagam, Y., Narevicius, J. & Narevicius, E. Observation of resonances in Penning ionization reactions at sub-kelvin temperatures in merged beams. Science 338, 234–239 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    Osterwalder, A. Merged neutral beams. EPJ Tech. Instrum. 2, 10 (2015).

    Article  Google Scholar 

  21. 21.

    Chefdeville, S., Kalugina, Y., van de Meerakker, S. Y. T., Lique, F. & Costes, M. Observation of partial wave resonances in low-energy O2–H2 inelastic collisions. Science 341, 1094–1096 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    Vogels, S. N. et al. Imaging resonances in low-energy NO–He inelastic collisions. Science 350, 787–790 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Vogels, S. N. et al. Scattering resonances in bimolecular collisions between NO radicals and H2 challenge the theoretical gold standard. Nat. Chem. 10, 435–440 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Bergeat, A. et al. Understanding the quantum nature of low-energy C(3Pj) + He inelastic collisions. Nat. Chem. 10, 519–522 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    Beyer, M. & Merkt, F. Half-collision approach to cold chemistry: shape resonances, elastic scattering, and radiative association in the H+ + H and D+ + D collision systems. Phys. Rev. X 8, 1–15 (2018).

    Google Scholar 

  26. 26.

    Ren, Z. et al. Probing the resonance potential in the F atom reaction with hydrogen deuteride with spectroscopic accuracy. Proc. Natl Acad. Sci. USA 105, 12662–12666 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    Lavert-Ofir, E. et al. Observation of the isotope effect in sub-kelvin reactions. Nat. Chem. 6, 332–335 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Eppink, A. T. J. B. & Parker, D. H. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68, 3477–3484 (1997).

    CAS  Article  Google Scholar 

  29. 29.

    Ashfold, M. N. R. et al. Imaging the dynamics of gas phase reactions. Phys. Chem. Chem. Phys. 8, 26–53 (2006).

    CAS  Article  Google Scholar 

  30. 30.

    Even, U. The Even–Lavie valve as a source for high intensity supersonic beam. EPJ Tech. Instrum. 2, 17 (2015).

    Article  Google Scholar 

  31. 31.

    Klein, A. et al. Directly probing anisotropy in atom-molecule collisions through quantum scattering resonances. Nat. Phys. 13, 35–38 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Skodje, R. T. et al. Resonance-mediated chemical reaction: F + HD → HF + D. Phys. Rev. Lett. 85, 1206–1209 (2000).

    CAS  Article  Google Scholar 

  33. 33.

    Yang, T. et al. Extremely short-lived reaction resonances in Cl + HD (v = 1) → DCl + H due to chemical bond softening. Science 347, 60–63 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    Wang, T. et al. Dynamical resonances in chemical reactions. Chem. Soc. Rev. 47, 6744–6763 (2018).

    CAS  Article  Google Scholar 

  35. 35.

    Moiseyev, N. Non-Hermitian Quantum Mechanics (Cambridge Univ. Press, 2011).

  36. 36.

    Yun, R., Narevicius, E. & Averbukh, V. Penning ionization widths by Fano-algebraic diagrammatic construction method. J. Chem. Phys. 148, 114101 (2018).

  37. 37.

    Zhang, D. & Willitsch, S. in Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero (eds Dulieu, O. & Osterwalder, A.) Ch. 10 (Royal Society of Chemistry, 2018).

  38. 38.

    Luria, K., Lavie, N. & Even, U. Dielectric barrier discharge source for supersonic beams. Rev. Sci. Instrum. 80, 104102–104104 (2009).

    CAS  Article  Google Scholar 

  39. 39.

    Blech, A. et al. Phase protection of Fano-Feshbach resonances. Nat. Commun. 11, 999 (2020).

    CAS  Article  Google Scholar 

  40. 40.

    Margulis, B., Narevicius, J. & Narevicius, E. Direct observation of a Feshbach resonance by coincidence detection of ions and electrons. Nat. Commun. 11, 1–6 (2020).

    Article  Google Scholar 

  41. 41.

    Wiley, W. C. & McLaren, I. H. Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instrum. 26, 1150–1157 (1955).

    CAS  Article  Google Scholar 

  42. 42.

    Janssen, L. M. C., van der Avoird, A. & Groenenboom, G. C. Quantum reactive scattering of ultracold NH(X3Σ) radicals in a magnetic trap. Phys. Rev. Lett. 110, 1–5 (2013).

    Article  Google Scholar 

  43. 43.

    Manolopoulos, D. E. Derivation and reflection properties of a transmission-free absorbing potential. J. Chem. Phys. 117, 9552–9559 (2002).

    CAS  Article  Google Scholar 

  44. 44.

    Londoño, B. E., Mahecha, J. E., Luc-Koenig, E. & Crubellier, A. Shape resonances in ground-state diatomic molecules: general trends and the example of RbCs. Phys. Rev. A 82, 012510 (2010).

    Article  Google Scholar 

Download references


We acknowledge financial support from the European Research Council and the Israel Science Foundation. Additional financial support from the German–Israeli Foundation (grant no. 1254) is gratefully acknowledged. C.P.K. is grateful for a Rosi and Max Varon Visiting Professorship. Correspondence and requests for materials should be addressed to E.N. and C.P.K.

Author information




P.P. and N.D. carried out the experiments. D.M.R. performed the calculations with help from A.v.d.A. C.P.K. and E.N. conceived and supervised the work. All authors discussed the results and wrote the manuscript.

Corresponding authors

Correspondence to Christiane P. Koch or Edvardas Narevicius.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Partial and total rate coefficients for elastic scattering of He* with normal D2.

The black curve denotes the partial elastic scattering rate coefficient integrated only over the backward hemisphere. The red curve denotes the total elastic scattering rate coefficient (integrated over all scattering angles). Note the different y-scales for the partial and total rate coefficients.

Source data

Source Data Fig. 3

Rate coefficients as a function of collision energy for elastic collisions and Penning ionization of He* + D2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paliwal, P., Deb, N., Reich, D.M. et al. Determining the nature of quantum resonances by probing elastic and reactive scattering in cold collisions. Nat. Chem. 13, 94–98 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing