Reply to: Questioning the rate law in the analysis of water oxidation catalysis on haematite photoanodes

The Original Article was published on 09 November 2020

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Mechanistic analyses of water and methanol oxidation on α-Fe2O3.
Fig. 2: Arrhenius slope analysis on α-Fe2O3.

Data availability

The dataset used here can be found in the respective references or can be shared upon request.


  1. 1.

    Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (John Wiley & Sons, Inc., 2001).

  2. 2.

    Zhang, S. & Leng, W. Questioning the rate law in the analysis of water oxidation catalysis on haematite photoanodes. Nat. Chem. (2020).

  3. 3.

    Mesa, C. A. et al. Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nat. Chem. 12, 82–89 (2020).

    CAS  Article  Google Scholar 

  4. 4.

    Rosenbluth, M. L. & Lewis, N. S. Ideal behavior of the open circuit voltage of semiconductor/liquid junctions. J. Phys. Chem. 93, 3735–3740 (1989).

    CAS  Article  Google Scholar 

  5. 5.

    Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    Lewis, N. S. Progress in understanding electron-transfer reactions at semiconductor/liquid interfaces. J. Phys. Chem. B 102, 4843–4855 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    Kay, A., Cesar, I. & Grätzel, M. New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    Jang, J.-W. et al. Enabling unassisted solar water splitting by iron oxide and silicon. Nat. Commun. 6, 7447 (2015).

    Article  Google Scholar 

  9. 9.

    Mesa, C. A. et al. Kinetics of photoelectrochemical oxidation of methanol on hematite photoanodes. J. Am. Chem. Soc. 139, 11537–11543 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Mesa, C. A. et al. Impact of synthesis route on the water oxidation kinetics of hematite photoanodes. J. Phys. Chem. Lett. 11, 7285–7290 (2020).

    CAS  Article  Google Scholar 

  11. 11.

    Le Formal, F. et al. Rate law analysis of water oxidation on a hematite surface. J. Am. Chem. Soc. 137, 6629–6637 (2015).

    Article  Google Scholar 

  12. 12.

    Upul Wijayantha, K. G., Saremi-Yarahmadi, S. & Peter, L. M. Kinetics of oxygen evolution at α-Fe2O3 photoanodes: a study by photoelectrochemical impedance spectroscopy. Phys. Chem. Chem. Phys. 13, 5264–5270 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Leng, W. H., Zhang, Z., Zhang, J. Q. & Cao, C. N. Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy. J. Phys. Chem. B 109, 15008–15023 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    Natarajan, A., Oskam, G. & Searson, P. C. The potential distribution at the semiconductor/solution interface. J. Phys. Chem. B 102, 7793–7799 (1998).

    CAS  Article  Google Scholar 

  15. 15.

    Peter, L. Energetics and kinetics of light-driven oxygen evolution at semiconductor electrodes: the example of hematite. J. Solid State Electrochem. 17, 315–326 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Uosaki, K. & Kita, H. Effects of the Helmholtz layer capacitance on the potential distribution at semiconductor/electrolyte interface and the linearity of the Mott–Schottky plot. J. Electrochem. Soc. 130, 895–897 (1983).

    CAS  Article  Google Scholar 

  17. 17.

    Zhang, Z., Nagashima, H. & Tachikawa, T. Ultra-narrow depletion layers in hematite mesocrystal-based photoanode for boosting multihole water oxidation. Angew. Chem. Int. Ed. 59, 9047–9054 (2020).

    CAS  Article  Google Scholar 

  18. 18.

    Shavorskiy, A. et al. Direct mapping of band positions in doped and undoped hematite during photoelectrochemical water splitting. J. Phys. Chem. Lett. 8, 5579–5586 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Barroso, M. et al. Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. Proc. Natl Acad. Sci. USA 109, 15640–15645 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    Barroso, M., Pendlebury, S. R., Cowan, A. J. & Durrant, J. R. Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chem. Sci. 4, 2724–2734 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    Le Formal, F. et al. Back electron–hole recombination in hematite photoanodes for water splitting. J. Am. Chem. Soc. 136, 2564–2574 (2014).

    Article  Google Scholar 

Download references


J.R.D. acknowledges financial support from the European Research Council (project Intersolar 291482). C.A.M. thanks COLCIENCIAS (now Ministry of Science, Technology and Innovation, call 568) for funding. J.R.D., C.A.M., R.R. and S.C. acknowledge H2020 project A-LEAF (732840) and L.F. thanks the European Union for a Marie Curie fellowship (658270). We also thank S. Zhang and W. Leng for their interest in our research and for encouraging insightful scientific debate.

Author information




C.A.M., L.F. and J.R.D. conceived and designed the experiments. C.A.M. performed the data collection, treatment and analysis. C.A.M., R.R. and J.R.D. co-wrote the manuscript. All the authors discussed the results, commented on and revised the manuscript.

Corresponding author

Correspondence to James R. Durrant.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mesa, C.A., Rao, R.R., Francàs, L. et al. Reply to: Questioning the rate law in the analysis of water oxidation catalysis on haematite photoanodes. Nat. Chem. 12, 1099–1101 (2020).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing