Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Emergence of low-symmetry foldamers from single monomers


Self-assembly is a powerful method to obtain large discrete functional molecular architectures. When using a single building block, self-assembly generally yields symmetrical objects in which all the subunits relate similarly to their neighbours. Here we report the discovery of a family of self-constructing cyclic macromolecules with stable folded conformations of low symmetry, which include some with a prime number (13, 17 and 23) of units, despite being formed from a single component. The formation of these objects amounts to the production of polymers with a perfectly uniform length. Design rules for the spontaneous emergence of such macromolecules include endowing monomers with a strong potential for non-covalent interactions that remain frustrated in competing entropically favoured yet conformationally restrained smaller cycles. The process can also be templated by a guest molecule that itself has an asymmetrical structure, which paves the way to molecular imprinting techniques at the level of single polymer chains.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: How foldamer formation depends on building block design.
Fig. 2: Spontaneous formation of large folded macrocycles.
Fig. 3: Crystal structures of low-symmetry-foldamers.

Data availability

The authors declare that all the data supporting the findings of this study are available within the article, in the source data files and in the Supplementary Information. Mass and NMR spectra are stored locally in native format and are available upon request. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 1942977 for (4b)16 and 1999456 for (4d)23, respectively. Copies of the data can be obtained free of charge via Source data are provided with this paper.


  1. 1.

    Fujita, D. et al. Self-assembly of tetravalent Goldberg polyhedra from 144 small components. Nature 540, 563–566 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Bale, J. B. et al. Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353, 389–394 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Pasquale, S., Sattin, S., Escudero-Adan, E. C., Martinez-Belmonte, M. & de Mendoza, J. Giant regular polyhedra from calixarene carboxylates and uranyl. Nat. Commun. 3, 785 (2012).

    Article  Google Scholar 

  4. 4.

    Sasaki, E. et al. Structure and assembly of scalable porous protein cages. Nat. Commun. 8, 14663 (2017).

    Article  Google Scholar 

  5. 5.

    Anderson, K. M., Goeta, A. E. & Steed, J. W. Supramolecular synthon frustration leads to crystal structures with Z′ > 1. Cryst. Growth Des. 8, 2517–2524 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    Banerjee, R., Bhatt, P. M., Kirchner, M. T. & Desiraju, G. R. Structural studies of the system Na(saccharinate)·nH2O: a model for crystallization. Angew. Chem. Int. Ed. 44, 2515–2520 (2005).

    CAS  Article  Google Scholar 

  7. 7.

    Rhys, G. G. et al. Maintaining and breaking symmetry in homomeric coiled-coil assemblies. Nat. Commun. 9, 4132 (2018).

    Article  Google Scholar 

  8. 8.

    Whitesides, G. M. & Ismagilov, R. F. Complexity in chemistry. Science 284, 89–92 (1999).

    CAS  Article  Google Scholar 

  9. 9.

    Lehn, J.-M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev. 36, 151–160 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    Lehn, J.-M. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry. Top. Curr. Chem. 322, 1–32 (2012).

    CAS  PubMed  Google Scholar 

  11. 11.

    Vantomme, G. & Meijer, E. W. The construction of supramolecular systems. Science 363, 1396–1397 (2019).

    CAS  Article  Google Scholar 

  12. 12.

    Nitschke, J. R. Systems chemistry: molecular networks come of age. Nature 462, 736–738 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    Li, J., Nowak, P. & Otto, S. Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry. J. Am. Chem. Soc. 135, 9222–9239 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    Corbett, P. T. et al. Dynamic combinatorial chemistry. Chem. Rev. 106, 3652–3711 (2006).

    CAS  Article  Google Scholar 

  15. 15.

    Cougnon, F. B. L. & Sanders, J. K. M. Evolution of dynamic combinatorial chemistry. Acc. Chem. Res. 45, 2211–2221 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    Tsiamantas, C. et al. Selective dynamic assembly of disulfide macrocyclic helical foldamers with remote communication of handedness. Angew. Chem. Int. Ed. 55, 6848–6852 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Steinkruger, J. D., Woolfson, D. N. & Gellman, S. H. Side-chain pairing preferences in the parallel coiled-coil dimer motif: insight on ion pairing between core and flanking sites. J. Am. Chem. Soc. 132, 7586–7588 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    Hadley, E. B., Testa, O. D., Woolfson, D. N. & Gellman, S. H. Preferred side-chain constellations at antiparallel coiled-coil interfaces. Proc. Natl Acad. Sci. USA 105, 530–535 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    Krishnan-Ghosh, Y. & Balasubramanian, S. Dynamic covalent chemistry on self-templating peptides: formation of a disulfide-linked beta-hairpin mimic. Angew. Chem. Int. Ed. 42, 2171–2173 (2003).

    CAS  Article  Google Scholar 

  20. 20.

    Oh, K., Jeong, K. S. & Moore, J. S. Folding-driven synthesis of oligomers. Nature 414, 889–893 (2001).

    CAS  Article  Google Scholar 

  21. 21.

    Liu, B. et al. Complex molecules that fold like proteins can emerge spontaneously. J. Am. Chem. Soc. 141, 1685–1689 (2019).

    CAS  Article  Google Scholar 

  22. 22.

    Carnall, J. M. A. et al. Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    Komáromy, D. et al. Self-assembly can direct dynamic covalent bond formation toward diversity or specificity. J. Am. Chem. Soc. 139, 6234–6241 (2017).

    Article  Google Scholar 

  24. 24.

    Bartolec, B., Altay, M. & Otto, S. Template-promoted self-replication in dynamic combinatorial libraries made from a simple building block. Chem. Commun. 54, 13096–13098 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    Sadownik, J. W., Mattia, E., Nowak, P. & Otto, S. Diversification of self-replicating molecules. Nat. Chem. 8, 264–269 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Seo, J. et al. An infrared spectroscopy approach to follow β-sheet formation in peptide amyloid assemblies. Nat. Chem. 9, 39–44 (2016).

    Article  Google Scholar 

  27. 27.

    Käseborn, M., Holstein, J. J., Clever, G. H. & Lützen, A. A rotaxane-like cage-in-ring structural motif for a metallosupramolecular Pd6L12 aggregate. Angew. Chem. Int. Ed. 57, 12171–12175 (2018).

    Article  Google Scholar 

  28. 28.

    Huang, B., Prantil, M. A., Gustafson, T. L. & Parquette, J. R. The effect of global compaction on the local secondary structure of folded dendrimers. J. Am. Chem. Soc. 125, 14518–14530 (2003).

    CAS  Article  Google Scholar 

  29. 29.

    BelBruno, J. J. Molecularly imprinted polymers. Chem. Rev. 119, 94–119 (2019).

    CAS  Article  Google Scholar 

  30. 30.

    Allen, S. J., Giles, K., Gilbert, T. & Bush, M. F. Ion mobility mass spectrometry of peptide, protein, and protein complex ions using a radio-frequency confining drift cell. Analyst 141, 884–891 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Warnke, S., von Helden, G. & Pagel, K. Analyzing the higher order structure of proteins with conformer-selective ultraviolet photodissociation. Proteomics 15, 2804–2812 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Revercomb, H. E. & Mason, E. A. Theory of plasma chromatography/gaseous electrophoresis. Review. Anal. Chem. 47, 970–983 (1975).

    CAS  Article  Google Scholar 

  33. 33.

    Nurizzo, D. et al. The ID23-1 structural biology beamline at the ESRF. J. Synchrotron Rad 13, 227–238 (2006).

    CAS  Article  Google Scholar 

  34. 34.

    Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    CAS  Article  Google Scholar 

  35. 35.

    Sheldrick, G. M. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    Article  Google Scholar 

  36. 36.

    Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    Article  Google Scholar 

  37. 37.

    Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 42, 339–341 (2009).

    CAS  Article  Google Scholar 

  38. 38.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS  Article  Google Scholar 

  39. 39.

    Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. D 65, 148–155 (2009).

    CAS  Article  Google Scholar 

  40. 40.

    Cianci, M. et al. P13, the EMBL macromolecular crystallography beamline at the low-emittance PETRA III ring for high- and low-energy phasing with variable beam focussing. J. Synchrotron Rad. 24, 323–332 (2017).

    CAS  Article  Google Scholar 

  41. 41.

    CrysAlisPRO (Agilent Technologies Ltd, 2014).

Download references


We thank P. van der Meulen and J. Kemmink for their assistance with the NMR experiments and analysing the data. We thank I. Melnikov (ID23-1, ERSF) and G. Pompidor (PETRA III, DESY) for assistance during data collection at the synchrotron beamlines. This research was supported by the ERC (AdG 741774), the EU (MCIF 745805−DSR), NWO (VICI grant), Zernike Dieptestrategie and the Dutch Ministry of Education, Culture and Science (Gravitation program 024.001.035).

Author information




S.O. and I.H. supervised the overall project. C.G.P. conceived and designed the study, synthesized the building blocks, analysed the DCL compositions by UPLC and isolated and characterized the foldamers by CD and NMR spectroscopy. B.L. performed the UPLC-MS experiments and analysed the data. P.K.M. and B.K. carried out the crystallographic studies. X.M. and K.L. performed the ITC experiments. D.K., W.H., C.M., R.C. and K.P. performed the IM-MS experiments and analysed the data. C.G.P., I.H. and S.O. co-wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Ivan Huc or Sijbren Otto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–126 and Tables 1–4.

Supplementary Video 1

Crystal structure of macrocycle (4b)16.

Supplementary Video 2

Crystal structure of macrocycle (4d)23.

Supplementary Data 1

Raw UPLC chromatograms, raw temperature-dependent CD spectral data and ion-mobility data.

Supplementary Data 2

Crystallographic information file including structure factor for the structure of (4b)16.

Supplementary Data 3

Crystallographic information file including structure factor for the structure of (4d)23.

Source data

Source Data Fig. 2

Raw UPLC chromatograms, raw ion-mobility and CD spectral data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pappas, C.G., Mandal, P.K., Liu, B. et al. Emergence of low-symmetry foldamers from single monomers. Nat. Chem. 12, 1180–1186 (2020).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing