Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exploiting attractive non-covalent interactions for the enantioselective catalysis of reactions involving radical intermediates

A Publisher Correction to this article was published on 18 November 2020

This article has been updated

Abstract

The past decade has seen unprecedented growth in the development of new chemical methods that proceed by mechanisms involving radical intermediates. This new attention has served to highlight a long-standing challenge in the field of radical chemistry — that of controlling absolute stereochemistry. This Review will examine developments using a strategy that offers enormous potential, in which attractive non-covalent interactions between a chiral catalyst and the substrate are leveraged to exert enantiocontrol. In a simplistic sense, such an approach mimics the modes of activation and control in enzyme catalysis and the realization that this can be achieved in the context of small-molecule catalysts has had sizable impact on the field of asymmetric catalysis in recent years. This strategy is now starting to quickly gather pace as a powerful approach for control of enantioselectivity in radical reactions and we hope that this focused survey of progress so far will inspire future developments in the area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A selection of enantioselective radical reactions to date, enabled by primarily covalent modes of catalysis.
Fig. 2: Summary of commonly used modes in non-covalent enantioselective catalysis.
Fig. 3: Design approach and selected applications of chiral hydrogen bonding templates and photosensitizers.
Fig. 4: Cationic hydrogen bond donors in asymmetric photoredox-mediated processes.
Fig. 5: Chiral phosphoric acids as enantioselective catalysts in radical-based reactions.
Fig. 6: Recent advances in asymmetric radical processes using chiral phosphate catalysts.
Fig. 7: Non-covalent interactions in asymmetric radical-based organometallic reactions.
Fig. 8: Examples demonstrating the use of biocatalysis to control enantioselectivity in non-natural radical reactions.

Similar content being viewed by others

Change history

  • 18 November 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Ojima, I. Catalytic Asymmetric Synthesis 3rd edn, (Wiley-VCH, 2010).

  2. Renaud, P. & Sibi, M. P. Radicals in Organic Synthesis. (Wiley-VCH, 2001).

  3. Zard, S. Z. Radical Reactions in Organic Synthesis. (Oxford Univ. Press, 2003).

  4. Togo, H. Advanced Free Radical Reactions for Organic Synthesis. (Elsevier, 2004).

  5. Narayanam, J. M. R. & Stephenson, C. R. J. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 40, 102–113 (2011).

    CAS  PubMed  Google Scholar 

  6. Schultz, D. M. & Yoon, T. P. Solar synthesis: prospects in visible light photocatalysis. Science 343, 1239176 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox Catalysis in Organic Chemistry. J. Org. Chem. 81, 6898–6926 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    CAS  PubMed  Google Scholar 

  9. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemistry: calling all Engineers. Angew. Chem. Int. Ed. 57, 4149–4155 (2018).

    CAS  Google Scholar 

  10. Porter, N. A., Giese, B. & Curran, D. P. Acyclic stereochemical control in free-radical reactions. Acc. Chem. Res. 24, 296–304 (1991).

    CAS  Google Scholar 

  11. Curran, D. P., Porter, N. A. & Giese, B. Stereochemistry of Radical Reactions: Concepts, Guidelines and Synthetic Applications (Wiley-VCH, 1995).

  12. Sibi, M. P., Ji, J., Wu, J. H., Gürtler, S. & Porter, N. A. Chiral Lewis acid catalysis in radical reactions: enantioselective conjugate radical additions. J. Am. Chem. Soc. 118, 9200–9201 (1996).

    CAS  Google Scholar 

  13. Sibi, M. P. & Porter, N. A. Enantioselective free radical reactions. Acc. Chem. Res. 32, 163–171 (1999).

    CAS  Google Scholar 

  14. Sibi, M. P., Manyem, S. & Zimmerman, J. Enantioselective radical processes. Chem. Rev. 103, 3263–3296 (2003).

    CAS  PubMed  Google Scholar 

  15. Silvi, M. & Melchiorre, P. Enhancing the potential of enantioselective organocatalysis with light. Nature 554, 41–49 (2018).

    CAS  PubMed  Google Scholar 

  16. Nicewicz, D. A. & MacMillan, D. W. C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322, 77–80 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Beeson, T. D., Mastracchio, A., Hong, J.-B., Ashton, K. & MacMillan, D. W. C. Enantioselective organocatalysis using SOMO activation. Science 316, 582–585 (2007).

    CAS  PubMed  Google Scholar 

  18. Murphy, J. J., Bastida, D., Paria, S., Fagnoni, M. & Melchiorre, P. Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals. Nature 532, 218–222 (2016).

    CAS  PubMed  Google Scholar 

  19. Huo, H. et al. Asymmetric photoredox transition-metal catalysis activated by visible light. Nature 515, 100–103 (2014).

    CAS  PubMed  Google Scholar 

  20. Brimioulle, R. & Bach, T. Enantioselective Lewis acid catalysis of intramolecular enone [2+2] photocycloaddition reactions. Science 342, 840–843 (2013).

    CAS  PubMed  Google Scholar 

  21. Du, J., Skubi, K. L., Schultz, D. M. & Yoon, T. P. A dual-catalysis approach to enantioselective [2+2] photocycloadditions using visible light. Science 344, 392–396 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hashimoto, T., Kawamata, Y. & Maruoka, K. An organic thiyl radical catalyst for enantioselective cyclization. Nat. Chem. 6, 702–705 (2014).

    CAS  PubMed  Google Scholar 

  23. Kern, N., Plesniak, M. P., McDouall, J. J. W. & Procter, D. J. Enantioselective cyclizations and cyclization cascades of samarium ketyl radicals. Nat. Chem. 9, 1198–1204 (2017).

    CAS  PubMed  Google Scholar 

  24. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    CAS  Google Scholar 

  25. Liwosz, T. W. & Chemler, S. R. Copper-catalyzed enantioselective intramolecular alkene amination/intermolecular Heck-type coupling cascade. J. Am. Chem. Soc. 134, 2020–2023 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu, R. & Buchwald, S. L. Enantioselective functionalization of radical intermediates in redox catalysis: copper-catalyzed asymmetric oxytrifluoromethylation of alkenes. Angew. Chem. Int. Ed. 52, 12655–12658 (2013).

    CAS  Google Scholar 

  27. Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. Science 351, 681–684 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, W. et al. Enantioselective cyanation of benzylic C–H bonds via copper-catalyzed radical relay. Science 353, 1014–1018 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gutierrez, O., Tellis, J. C., Primer, D. N., Molander, G. A. & Kozlowski, M. C. Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings. J. Am. Chem. Soc. 137, 4896–4899 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zuo, Z. et al. Enantioselective decarboxylative arylation of α-amino acids via the merger of photoredox and nickel catalysis. J. Am. Chem. Soc. 138, 1832–1835 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, Z., Yin, H. & Fu, G. C. Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins. Nature 563, 379–383 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao, Y. & Weix, D. J. Enantioselective cross-coupling of meso-epoxides with aryl halides. J. Am. Chem. Soc. 137, 3237–3240 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hao, W., Harenberg, J. H., Wu, X., MacMillan, S. N. & Lin, S. Diastereo- and enantioselective formal [3+2] cycloaddition of cyclopropyl ketones and alkenes via Ti-catalyzed radical redox relay. J. Am. Chem. Soc. 140, 3514–3517 (2018).

    CAS  PubMed  Google Scholar 

  34. Wang, Y., Wen, X., Cui, X. & Zhang, X. P. Enantioselective radical cyclization for construction of 5-membered ring structures by metalloradical C–H Alkylation. J. Am. Chem. Soc. 140, 4792–4796 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lang, K., Torker, S., Wojtas, L. & Zhang, X. P. Asymmetric induction and enantiodivergence in catalytic radical C–H amination via enantiodifferentiative H-atom abstraction and stereoretentive radical substitution. J. Am. Chem. Soc. 141, 12388–12396 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Knowles, R. R. & Jacobsen, E. N. Attractive noncovalent interactions in asymmetric catalysis: Links between enzymes and small molecule catalysts. Proc. Natl Acad. Sci. USA 107, 20678–20685 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dalko, P. I. Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications (Wiley-VCH, Weinheim, 2013).

  38. Doyle, A. G. & Jacobsen, E. N. Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev. 107, 5713–5743 (2007).

    CAS  PubMed  Google Scholar 

  39. Phipps, R. J., Hamilton, G. L. & Toste, F. D. The progression of chiral anions from concepts to applications in asymmetric catalysis. Nature Chemistry 4, 603 (2012).

    CAS  PubMed  Google Scholar 

  40. Brak, K. & Jacobsen, E. N. Asymmetric ion-pairing catalysis. Angew. Chem. Int. Ed. 52, 534–561 (2013).

    CAS  Google Scholar 

  41. Mahlau, M. & List, B. Asymmetric counteranion-directed catalysis: concept, definition, and applications. Angew. Chem. Int. Ed. 52, 518–533 (2013).

    CAS  Google Scholar 

  42. Parmar, D., Sugiono, E., Raja, S. & Rueping, M. Complete field guide to asymmetric BINOL-Phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem. Rev. 114, 9047–9153 (2014).

    CAS  PubMed  Google Scholar 

  43. Akiyama, T., Itoh, J., Yokota, K. & Fuchibe, K. Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. Angew. Chem. Int. Ed. 43, 1566–1568 (2004).

    CAS  Google Scholar 

  44. Uraguchi, D. & Terada, M. Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc. 126, 5356–5357 (2004).

    CAS  PubMed  Google Scholar 

  45. Reid, J. P., Simón, L. & Goodman, J. M. A practical guide for predicting the stereochemistry of bifunctional phosphoric acid catalyzed reactions of imines. Acc. Chem. Res. 49, 1029–1041 (2016).

    CAS  PubMed  Google Scholar 

  46. Kennedy, C. R., Lin, S. & Jacobsen, E. N. The cation–π Interaction in small-molecule catalysis. Angew. Chem. Int. Ed. 55, 12596–12624 (2016).

    CAS  Google Scholar 

  47. Zhao, Y. et al. The emergence of anion−π catalysis. Acc. Chem. Res. 51, 2255–2263 (2018).

    CAS  PubMed  Google Scholar 

  48. Sutar, R. L. & Huber, S. M. Catalysis of organic reactions through halogen bonding. ACS Catal. 9, 9622–9639 (2019).

    CAS  Google Scholar 

  49. Wagner, J. P. & Schreiner, P. R. London dispersion in molecular chemistry—reconsidering steric effects. Angew. Chem. Int. Ed. 54, 12274–12296 (2015).

    CAS  Google Scholar 

  50. Neel, A. J., Hilton, M. J., Sigman, M. S. & Toste, F. D. Exploiting non-covalent π interactions for catalyst design. Nature 543, 637–646 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wheeler, S. E., Seguin, T. J., Guan, Y. & Doney, A. C. Noncovalent interactions in organocatalysis and the prospect of computational catalyst design. Acc. Chem. Res. 49, 1061–1069 (2016).

    CAS  PubMed  Google Scholar 

  52. Ahn, S., Hong, M., Sundararajan, M., Ess, D. H. & Baik, M.-H. Design and optimization of catalysts based on mechanistic insights derived from quantum chemical reaction modeling. Chem. Rev. 119, 6509–6560 (2019).

    CAS  PubMed  Google Scholar 

  53. Brimioulle, R., Lenhart, D., Maturi, M. M. & Bach, T. Enantioselective catalysis of photochemical reactions. Angew. Chem. Int. Ed. 54, 3872–3890 (2015).

    CAS  Google Scholar 

  54. Jiang, C., Chen, W., Zheng, W.-H. & Lu, H. Advances in asymmetric visible-light photocatalysis, 2015–2019. Org. Biomol. Chem. 17, 8673–8689 (2019).

    CAS  PubMed  Google Scholar 

  55. Yin, Y., Zhao, X., Qiao, B. & Jiang, Z. Cooperative photoredox and chiral hydrogen-bonding catalysis. Org. Chem. Front. 7, 1283–1296 (2020).

    CAS  Google Scholar 

  56. Gamlin, J. N. et al. The ionic auxiliary concept in solid state organic photochemistry. Acc. Chem. Res. 29, 203–209 (1996).

    CAS  Google Scholar 

  57. Jones, R., Scheffer, J. R., Trotter, J. & Yang, J. Crystal to molecular chirality transfer: supramolecular photochemistry of crystalline carboxylate salts. Tetrahedron Lett. 33, 5481–5484 (1992).

    CAS  Google Scholar 

  58. Burg, F. & Bach, T. Lactam hydrogen bonds as control elements in enantioselective transition-metal-catalyzed and photochemical reactions. J. Org. Chem. 84, 8815–8836 (2019).

    CAS  PubMed  Google Scholar 

  59. Bach, T. & Bergmann, H. Enantioselective intermolecular [2+2]-photocycloaddition reactions of alkenes and a 2-quinolone in solution. J. Am. Chem. Soc. 122, 11525–11526 (2000).

    CAS  Google Scholar 

  60. Bach, T., Bergmann, H., Grosch, B. & Harms, K. Highly enantioselective intra- and intermolecular [2+2] photocycloaddition reactions of 2-quinolones mediated by a chiral lactam host: host−guest interactions, product configuration, and the origin of the stereoselectivity in solution. J. Am. Chem. Soc. 124, 7982–7990 (2002).

    CAS  PubMed  Google Scholar 

  61. Aechtner, T., Dressel, M. & Bach, T. Hydrogen bond mediated enantioselectivity of radical Reactions. Angew. Chem. Int. Ed. 43, 5849–5851 (2004).

    CAS  Google Scholar 

  62. Dressel, M. & Bach, T. Chirality multiplication and efficient chirality transfer in exo- and endo-radical cyclization reactions of 4-(4′-iodobutyl)quinolones. Org. Lett. 8, 3145–3147 (2006).

    CAS  PubMed  Google Scholar 

  63. Bakowski, A., Dressel, M., Bauer, A. & Bach, T. Enantioselective radical cyclisation reactions of 4-substituted quinolones mediated by a chiral template. Org. Biomol. Chem. 9, 3516–3529 (2011).

    CAS  PubMed  Google Scholar 

  64. Lenhart, D., Bauer, A., Pöthig, A. & Bach, T. Enantioselective visible-light-induced radical-addition reactions to 3-alkylidene indolin-2-ones. Chem. Eur J. 22, 6519–6523 (2016).

    CAS  PubMed  Google Scholar 

  65. Bauer, A., Westkamper, F., Grimme, S. & Bach, T. Catalytic enantioselective reactions driven by photoinduced electron transfer. Nature 436, 1139–1140 (2005).

    CAS  PubMed  Google Scholar 

  66. Müller, C., Bauer, A. & Bach, T. Light-driven enantioselective organocatalysis. Angew. Chem. Int. Ed. 48, 6640–6642 (2009).

    Google Scholar 

  67. Müller, C. et al. Enantioselective intramolecular [2+2]-photocycloaddition reactions of 4-substituted quinolones catalyzed by a chiral sensitizer with a hydrogen-bonding motif. J. Am. Chem. Soc. 133, 16689–16697 (2011).

    PubMed  Google Scholar 

  68. Alonso, R. & Bach, T. A chiral thioxanthone as an organocatalyst for enantioselective [2+2] photocycloaddition reactions induced by visible light. Angew. Chem. Int. Ed. 53, 4368–4371 (2014).

    CAS  Google Scholar 

  69. Tröster, A., Alonso, R., Bauer, A. & Bach, T. Enantioselective intermolecular [2+2] photocycloaddition reactions of 2(1H)-quinolones induced by visible light irradiation. J. Am. Chem. Soc. 138, 7808–7811 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. Hölzl-Hobmeier, A. et al. Catalytic deracemization of chiral allenes by sensitized excitation with visible light. Nature 564, 240–243 (2018).

    PubMed  Google Scholar 

  71. Tröster, A., Bauer, A., Jandl, C. & Bach, T. Enantioselective visible-light-mediated formation of 3-cyclopropylquinolones by triplet-sensitized deracemization. Angew. Chem. Int. Ed. 58, 3538–3541 (2019).

    Google Scholar 

  72. Bergonzini, G., Schindler, C. S., Wallentin, C.-J., Jacobsen, E. N. & Stephenson, C. R. J. Photoredox activation and anion binding catalysis in the dual catalytic enantioselective synthesis of β-amino esters. Chem. Sci. 5, 112–116 (2014).

    CAS  Google Scholar 

  73. Vallavoju, N., Selvakumar, S., Jockusch, S., Sibi, M. P. & Sivaguru, J. Enantioselective organo-photocatalysis mediated by atropisomeric thiourea derivatives. Angew. Chem. Int. Ed. 53, 5604–5608 (2014).

    CAS  Google Scholar 

  74. Chen, L.-A. et al. Asymmetric catalysis with an inert chiral-at-metal iridium complex. J. Am. Chem. Soc. 135, 10598–10601 (2013).

    CAS  PubMed  Google Scholar 

  75. Skubi, K. L. et al. Enantioselective excited-state photoreactions controlled by a chiral hydrogen-bonding iridium sensitizer. J. Am. Chem. Soc. 139, 17186–17192 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zheng, J. et al. Enantioselective intermolecular excited-state photoreactions using a chiral Ir triplet sensitizer: separating association from energy transfer in asymmetric photocatalysis. J. Am. Chem. Soc. 141, 13625–13634 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Uraguchi, D., Kinoshita, N., Kizu, T. & Ooi, T. Synergistic catalysis of ionic Brønsted acid and photosensitizer for a redox neutral asymmetric α-Coupling of N-arylaminomethanes with aldimines. J. Am. Chem. Soc. 137, 13768–13771 (2015).

    CAS  PubMed  Google Scholar 

  78. Kizu, T., Uraguchi, D. & Ooi, T. Independence from the sequence of single-electron transfer of photoredox process in redox-neutral asymmetric bond-forming reaction. J. Org. Chem. 81, 6953–6958 (2016).

    CAS  PubMed  Google Scholar 

  79. Shirakawa, S. & Maruoka, K. Recent developments in asymmetric phase-transfer reactions. Angew. Chem. Int. Ed. 52, 4312–4348 (2013).

    CAS  Google Scholar 

  80. Cannizzaro, C. E. & Houk, K. N. Magnitudes and chemical consequences of R3N+−C−H···OC Hydrogen Bonding. J. Am. Chem. Soc. 124, 7163–7169 (2002).

    CAS  PubMed  Google Scholar 

  81. Woźniak, Ł., Murphy, J. J. & Melchiorre, P. Photo-organocatalytic enantioselective perfluoroalkylation of β-ketoesters. J. Am. Chem. Soc. 137, 5678–5681 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. Yang, C. et al. Origin of stereoselectivity of the photoinduced asymmetric phase-transfer-catalyzed perfluoroalkylation of β-ketoesters. J. Org. Chem. 82, 9321–9327 (2017).

    CAS  PubMed  Google Scholar 

  83. Lin, L. et al. Organocatalytic enantioselective protonation for photoreduction of activated ketones and ketimines induced by visible light. Angew. Chem. Int. Ed. 56, 13842–13846 (2017).

    CAS  Google Scholar 

  84. Hou, M. et al. Enantioselective photoredox dehalogenative protonation. Chem. Sci. 10, 6629–6634 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee, S. & Kim, S. Enantioselective radical addition reactions to imines using binaphthol-derived chiral N-triflyl phosphoramides. Tetrahedron Lett. 50, 3345–3348 (2009).

    CAS  Google Scholar 

  86. Rono, L. J., Yayla, H. G., Wang, D. Y., Armstrong, M. F. & Knowles, R. R. Enantioselective photoredox catalysis enabled by proton-coupled electron transfer: development of an asymmetric aza-pinacol cyclization. J. Am. Chem. Soc. 135, 17735–17738 (2013).

    CAS  PubMed  Google Scholar 

  87. Proctor, R. S. J., Davis, H. J. & Phipps, R. J. Catalytic enantioselective Minisci-type addition to heteroarenes. Science 360, 419–422 (2018).

    CAS  PubMed  Google Scholar 

  88. Sigman, M. S., Harper, K. C., Bess, E. N. & Milo, A. The development of multidimensional analysis tools for asymmetric catalysis and beyond. Acc. Chem. Res. 49, 1292–1301 (2016).

    CAS  PubMed  Google Scholar 

  89. Reid, J. P., Proctor, R. S. J., Sigman, M. S. & Phipps, R. J. Predictive multivariate linear regression analysis guides successful catalytic enantioselective Minisci reactions of diazines. J. Am. Chem. Soc. 141, 19178–19185 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu, X. et al. Organocatalytic enantioselective addition of α-aminoalkyl radicals to isoquinolines. Org. Lett. 20, 6298–6301 (2018).

    CAS  PubMed  Google Scholar 

  91. Zheng, D. & Studer, A. Asymmetric synthesis of heterocyclic γ-amino-acid and diamine derivatives by three-component radical cascade reactions. Angew. Chem. Int. Ed. 58, 15803–15807 (2019).

    CAS  Google Scholar 

  92. Liu, Y. et al. Catalytic enantioselective radical coupling of activated ketones with N-aryl glycines. Chem. Sci. 9, 8094–8098 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Li, J. et al. Formal enantioconvergent substitution of alkyl halides via catalytic asymmetric photoredox radical coupling. Nat. Commun. 9, 2445 (2018).

    PubMed  PubMed Central  Google Scholar 

  94. Zeng, G., Li, Y., Qiao, B., Zhao, X. & Jiang, Z. Photoredox asymmetric catalytic enantioconvergent substitution of 3-chlorooxindoles. Chem. Commun. 55, 11362–11365 (2019).

    CAS  Google Scholar 

  95. Yin, Y. et al. Conjugate addition—enantioselective protonation of N-aryl glycines to α-branched 2-vinylazaarenes via cooperative photoredox and asymmetric catalysis. J. Am. Chem. Soc. 140, 6083–6087 (2018).

    CAS  PubMed  Google Scholar 

  96. Cao, K. et al. Catalytic enantioselective addition of prochiral radicals to vinylpyridines. J. Am. Chem. Soc. 141, 5437–5443 (2019).

    CAS  PubMed  Google Scholar 

  97. Morse, P. D., Nguyen, T. M., Cruz, C. L. & Nicewicz, D. A. Enantioselective counter-anions in photoredox catalysis: The asymmetric cation radical Diels-Alder reaction. Tetrahedron 74, 3266–3272 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gentry, E. C., Rono, L. J., Hale, M. E., Matsuura, R. & Knowles, R. R. Enantioselective synthesis of pyrroloindolines via noncovalent stabilization of indole radical cations and applications to the synthesis of alkaloid natural products. J. Am. Chem. Soc. 140, 3394–3402 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Shin, N. Y., Ryss, J. M., Zhang, X., Miller, S. J. & Knowles, R. R. Light driven deracemization enabled by excited state electron transfer. Science 366, 364–369 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Roos, C. B., Demaerel, J., Graff, D. E. & Knowles, R. R. Enantioselective hydroamination of alkenes with sulfonamides enabled by proton-coupled electron transfer. J. Am. Chem. Soc. 142, 5974–5979 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Huang, X. & Groves, J. T. Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C–H activation. J. Biol. Inorg. Chem. 22, 185–207 (2017).

    CAS  PubMed  Google Scholar 

  102. Huang, X. & Groves, J. T. Oxygen Activation and radical transformations in heme proteins and metalloporphyrins. Chem. Rev. 118, 2491–2553 (2018).

    CAS  PubMed  Google Scholar 

  103. Frost, J. R., Huber, S. M., Breitenlechner, S., Bannwarth, C., Bach, T. & Enantiotopos-selective, C–H. oxygenation catalyzed by a supramolecular ruthenium complex. Angew. Chem. Int. Ed. 54, 691–695 (2015).

    CAS  Google Scholar 

  104. Burg, F., Gicquel, M., Breitenlechner, S., Pöthig, A. & Bach, T. Site- and enantioselective C−H oxygenation catalyzed by a chiral manganese porphyrin complex with a remote binding site. Angew. Chem. Int. Ed. 57, 2953–2957 (2018).

    CAS  Google Scholar 

  105. Burg, F., Breitenlechner, S., Jandl, C. & Bach, T. Enantioselective oxygenation of exocyclic methylene groups by a manganese porphyrin catalyst with a chiral recognition site. Chem. Sci. 11, 2121–2129 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Gu, Q.-S., Li, Z.-L. & Liu, X.-Y. Copper(i)-catalyzed asymmetric reactions involving radicals. Acc. Chem. Res. 53, 170–181 (2020).

    CAS  PubMed  Google Scholar 

  107. Lin, J.-S. et al. A Dual-catalytic strategy to direct asymmetric radical aminotrifluoromethylation of Alkenes. J. Am. Chem. Soc. 138, 9357–9360 (2016).

    CAS  PubMed  Google Scholar 

  108. Wang, F.-L. et al. Catalytic asymmetric radical diamination of alkenes. Chem 3, 979–990 (2017).

    CAS  Google Scholar 

  109. Ye, L., Tian, Y., Meng, X., Gu, Q.-S. & Liu, X.-Y. Enantioselective Copper(i)/chiral phosphoric acid catalyzed intramolecular amination of allylic and benzylic C−H bonds. Angew. Chem. Int. Ed. 59, 1129–1133 (2020).

    CAS  Google Scholar 

  110. Cheng, Y. F. et al. Catalytic enantioselective desymmetrizing functionalization of alkyl radicals via Cu(i)/CPA cooperative catalysis. Nat. Catal. 3, 401–410 (2020).

    CAS  Google Scholar 

  111. Hönig, M., Sondermann, P., Turner, N. J. & Carreira, E. M. Enantioselective chemo- and biocatalysis: partners in retrosynthesis. Angew. Chem. Int. Ed. 56, 8942–8973 (2017).

    Google Scholar 

  112. Sheldon, R. A., Brady, D. & Bode, M. L. The hitchhiker’s guide to biocatalysis: recent advances in the use of enzymes in organic synthesis. Chem. Sci. 11, 2587–2605 (2020).

    PubMed  PubMed Central  Google Scholar 

  113. Reetz, M. T. Biocatalysis in organic chemistry and biotechnology: past, present, and future. J. Am. Chem. Soc. 135, 12480–12496 (2013).

    CAS  PubMed  Google Scholar 

  114. Arnold, F. H. Directed evolution: bringing new chemistry to life. Angew. Chem. Int. Ed. 57, 4143–4148 (2018).

    CAS  Google Scholar 

  115. Leveson-Gower, R. B., Mayer, C. & Roelfes, G. The importance of catalytic promiscuity for enzyme design and evolution. Nat. Rev. Chem. 3, 687–705 (2019).

    CAS  Google Scholar 

  116. Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203–213 (2020).

    CAS  Google Scholar 

  117. Sandoval, B. A. & Hyster, T. K. Emerging strategies for expanding the toolbox of enzymes in biocatalysis. Curr. Opin. Chem. Biol. 55, 45–51 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Broderick, J. B., Duffus, B. R., Duschene, K. S. & Shepard, E. M. Radical S-adenosylmethionine enzymes. Chem. Rev. 114, 4229–4317 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Shibata, N. & Toraya, T. Molecular architectures and functions of radical enzymes and their (re)activating proteins. J. Biochem. 158, 271–292 (2015).

    CAS  PubMed  Google Scholar 

  120. Jäger, C. M. & Croft, A. K. Anaerobic radical enzymes for biotechnology. ChemBioEng Rev. 5, 143–162 (2018).

    Google Scholar 

  121. Emmanuel, M. A., Greenberg, N. R., Oblinsky, D. G. & Hyster, T. K. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 540, 414–417 (2016).

    CAS  PubMed  Google Scholar 

  122. Fukuzumi, S., Hironaka, K. & Tanaka, T. Photoreduction of alkyl halides by an NADH model compound. An electron-transfer chain mechanism. J. Am. Chem. Soc. 105, 4722–4727 (1983).

    CAS  Google Scholar 

  123. Biegasiewicz, K. F., Cooper, S. J., Emmanuel, M. A., Miller, D. C. & Hyster, T. K. Catalytic promiscuity enabled by photoredox catalysis in nicotinamide-dependent oxidoreductases. Nat. Chem. 10, 770–775 (2018).

    CAS  PubMed  Google Scholar 

  124. Sandoval, B. A., Kurtoic, S. I., Chung, M. M., Biegasiewicz, K. F. & Hyster, T. K. Photoenzymatic catalysis enables radical-mediated ketone reduction in ene-reductases. Angew. Chem. Int. Ed. 58, 8714–8718 (2019).

    CAS  Google Scholar 

  125. Nakano, Y. et al. Photoenzymatic hydrogenation of heteroaromatic olefins using ‘ene’-reductases with photoredox catalysts. Angew. Chem. Int. Ed. 59, 10484–10488 (2020).

    CAS  Google Scholar 

  126. Sandoval, B. A., Meichan, A. J. & Hyster, T. K. Enantioselective hydrogen atom transfer: discovery of catalytic promiscuity in flavin-dependent ‘ene’-reductases. J. Am. Chem. Soc. 139, 11313–11316 (2017).

    CAS  PubMed  Google Scholar 

  127. Biegasiewicz, K. F. et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 364, 1166–1169 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Black, M. J. et al. Asymmetric redox-neutral radical cyclization catalysed by flavin-dependent ‘ene’-reductases. Nat. Chem. 12, 71–75 (2020).

    PubMed  Google Scholar 

Download references

Acknowledgements

R.S.J.P. is grateful to GlaxoSmithKline and the EPSRC for a CASE PhD studentship. We are grateful to the Leverhulme Trust for a research grant (RPG-2018-081), which provided funding for A.C.C. R.J.P. is grateful to the Royal Society for a University Research Fellowship and the ERC for a starting grant (StG 757381, NonCovRegioSiteCat).

Author information

Authors and Affiliations

Authors

Contributions

R.S.J.P and R.J.P. conceived and planned the article and R.S.J.P., A.C.C. and R.J.P. wrote the manuscript.

Corresponding author

Correspondence to Robert J. Phipps.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proctor, R.S.J., Colgan, A.C. & Phipps, R.J. Exploiting attractive non-covalent interactions for the enantioselective catalysis of reactions involving radical intermediates. Nat. Chem. 12, 990–1004 (2020). https://doi.org/10.1038/s41557-020-00561-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-00561-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing