Photosensitized oxidative addition to gold(i) enables alkynylative cyclization of o-alkylnylphenols with iodoalkynes

Abstract

The well-established oxidative addition–reductive elimination pathway is the most followed one in transition metal-catalysed cross-coupling reactions. While readily occurring with a series of transition metals, gold(i) complexes have shown some reluctance to undergo oxidative addition unless special sets of ligands on gold(i), reagents or reaction conditions are used. Here we show that under visible-light irradiation, an iridium photocatalyst triggers—via triplet sensitization—the oxidative addition of an alkynyl iodide onto a vinylgold(i) intermediate to deliver C(sp)2–C(sp) coupling products after reductive elimination. Mechanistic and modelling studies support that an energy-transfer event takes place, rather than a redox pathway. This particular mode of activation in gold homogenous catalysis was applied in several dual catalytic processes. Alkynylbenzofuran derivatives were obtained from o-alkynylphenols and iodoalkynes in the presence of catalytic gold(i) and iridium(iii) complexes under blue light-emitting diode irradiation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Gold-catalysed additions to alkynes.
Fig. 2: A vinylgold(i) species as a plausible intermediate.
Fig. 3: Potential surface energy of the reaction of 36 with 2a.
Fig. 4: Mechanism proposal.
Fig. 5: Scope of the alkynylation process.

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre under deposition numbers 1850903 ( 3aa ) and 1850902 ( 6 ). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other data supporting the findings of this study are available within the Article and the Supplementary Information, or from the corresponding authors on reasonable request.

References

  1. 1.

    Dorel, R. & Echavarren, A. M. Gold(I)-catalyzed activation of alkynes for the construction of molecular complexity. Chem. Rev. 115, 9028–9072 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    Fensterbank, L. & Malacria, M. Molecular complexity from polyunsaturated substrates: the gold catalysis approach. Acc. Chem. Res. 47, 953–965 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    Harris, R. J. & Widenhoefer, R. A. Gold carbenes, gold-stabilized carbocations, and cationic intermediates relevant to gold-catalysed enyne cycloaddition. Chem. Soc. Rev. 45, 4533–4551 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Wang, W., Hammond, G. B. & Xu, B. Ligand effects and ligand design in homogeneous gold(I) catalysis. J. Am. Chem. Soc. 134, 5697–5705 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    Liu, L.-P. & Hammond, G. Recent advances in the isolation and reactivity of organogold complexes. Chem. Soc. Rev. 41, 3129–3139 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    Hashmi, A. S. K. et al. Scope and limitations of palladium-catalyzed cross-coupling reactions with organogold compounds. Adv. Synth. Catal. 352, 1307–1314 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    Garcia-Dominguez, P. & Nevado, C. Au−Pd bimetallic catalysis: the importance of anionic ligands in catalyst speciation. J. Am. Chem. Soc. 138, 3266–3269 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Zheng, Z., Wang, Z., Wang, Y. & Zhang, L. Au-catalysed oxidative cyclisation. Chem. Soc. Rev. 45, 4448–4458 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Hopkinson, M. N., Tlahuext-Aca, A. & Glorius, F. Merging visible light photoredox and gold catalysis. Acc. Chem. Res. 49, 2261–2272 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Sahoo, B., Hopkinson, M. N. & Glorius, F. Combining gold and photoredox catalysis: visible light-mediated oxy- and aminoarylation of alkenes. J. Am. Chem. Soc. 135, 5505–5508 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    Tlahuext-Aca, A., Hopkinson, M. N., Sahoo, B. & Glorius, F. Dual gold/photoredox-catalyzed C(sp)–H arylation of terminal alkynes with diazonium salts. Chem. Sci 7, 89–93 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Shu, X.-Z., Zhang, M., Frei, H. & Toste, F. D. Dual visible light photoredox and gold-catalyzed arylative ring expansion. J. Am. Chem. Soc. 136, 5844–5847 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Kim, S., Rojas-Martin, J. & Toste, F. D. Visible light-mediated gold-catalysed carbon(sp2)–carbon(sp) cross-coupling. Chem. Sci. 7, 85–88 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Levin, M. D., Kim, S. & Toste, F. D. Photoredox catalysis unlocks single-electron elementary steps in transition metal catalyzed cross-coupling. ACS Cent. Sci. 2, 293–301 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Twilton, J., Le, C., Zhang, P., Evans, R. W. & MacMillan, D. W. C. The merger of transition metal and photocatalysis. Nat. Rev. Chem 1, 0052 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Patil, D. V., Yun, H. & Shin, S. Catalytic cross-coupling of vinyl golds with diazonium salts under photoredox and thermal conditions. Adv. Synth. Catal. 357, 2622–2628 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Um, J., Yun, H. & Shin, S. Cross-coupling of Meyer–Schuster intermediates under dual gold–photoredox catalysis. Org. Lett. 18, 484–487 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Huang, L., Rudolph, M., Rominger, F. & Hashmi, A. S. K. Photosensitizer-free visible light mediated gold catalyzed 1,2-difunctionalization of alkynes. Angew. Chem. Int. Ed. 55, 4808–4813 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Tlahuext-Aca, A., Hopkinson, M. N., Garza-Sanchez, R. A. & Glorius, F. Alkyne difunctionalization by dual gold/photoredox catalysis. Chem. Eur. J 22, 5909–5913 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Alcaide, B., Almendros, P., Busto, E. & Luna, A. Domino Meyer–Schuster/arylation reaction of alkynols or alkynyl hydroperoxides with diazonium salts promoted by visible light under dual gold and ruthenium catalysis. Adv. Synth. Catal. 358, 1526–1533 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Cornilleau, T., Hermange, P. & Fouquet, E. Gold-catalysed cross-coupling between aryldiazonium salts and arylboronic acids: probing the usefulness of photoredox conditions. Chem. Commun. 52, 10040–10043 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Gauchot, V. & Lee, A.-L. Dual gold photoredox C(sp2)-C(sp2) cross couplings – development and mechanistic studies. Chem. Commun. 52, 10163–10166 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Gauchot, V., Sutherland, D. R. & Lee, A.-L. Dual gold and photoredox catalysed C–H activation of arenes for aryl–aryl cross couplings. Chem. Sci 8, 2885–2889 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Tlahuext-Aca, A., Hopkinson, M. N., Daniliuc, C. G. & Glorius, F. Oxidative addition to gold(I) by photoredox catalysis: straightforward access to diverse (C,N)- cyclometalated gold(III) complexes. Chem. Eur. J 22, 11587–11592 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Zhang, Q., Zhang, Z.-Q., Fu, Y. & Yu, H.-Z. Mechanism of the visible light-mediated gold-catalyzed oxyarylation reaction of alkenes. ACS Catal 6, 798–808 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Zhou, Q.-Q., Zou, Y.-Q., Lu, L.-Q. & Xiao, W.-J. Visible-light-induced organic photochemical reactions through energy-transfer pathways. Angew. Chem. Int. Ed. 58, 1586–1604 (2019).

    CAS  Article  Google Scholar 

  28. 28.

    Strieth-Kalthoff, F., James, J. M., Teders, M., Pitzer, L. & Glorius, F. Energy transfer catalysis mediated by visible light: principles, applications, directions. Chem. Soc. Rev. 47, 7190–7202 (2018).

    CAS  Article  Google Scholar 

  29. 29.

    de Haro, T. & Nevado, C. Gold-Catatalyzed Ethynylation of Arenes. J. Am. Chem. Soc. 132, 1512–1513 (2010).

    Article  Google Scholar 

  30. 30.

    Hopkinson, M. N., Ross, J. E., Giuffredi, G. T., Gee, A. D. & Gouverneur, V. Gold-catalyzed cascade cyclization−oxidative alkynylation of allenoates. Org. Lett. 12, 4904–4907 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    Li, Y., Brand, J. P. & Waser, J. Gold-catalyzed regioselective synthesis of 2- and 3-alkynyl furans. Angew. Chem. Int. Ed. 52, 6743–6747 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    Xia, Z., Khaled, O., Mouriès-Mansuy, V., Ollivier, C. & Fensterbank, L. Dual photoredox/gold catalysis arylative cyclization of o-alkynylphenols with aryldiazonium salts: a flexible synthesis of benzofurans. J. Org. Chem. 81, 7182–7190 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Joost, M., Amgoune, A. & Bourissou, D. Reactivity of gold complexes towards elementary organometallic reactions. Angew. Chem. Int. Ed. 54, 15022–15045 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    Levin, M. D. & Toste, F. D. Gold-catalyzed allylation of aryl boronic acids: accessing cross-coupling reactivity with gold. Angew. Chem. Int. Ed. 53, 6211–6215 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Asomoza-Solis, E. O., Rojas-Ocampo, J., Toscano, R. A. & Porcel, S. Arenediazonium salts as electrophiles for the oxidative addition of gold(I). Chem. Commun. 52, 7295–7298 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Huang, L., Rominger, F., Rudolph, M. & Hashmi, A. S. K. A general access to organogold(III) complexes by oxidative addition of diazonium salts. Chem. Commun. 52, 6435–6438 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    Winston, M. S., Wolf, W. J. & Toste, F. D. Photoinitiated oxidative addition of CF3I to gold(I) and facile aryl-CF3 reductive elimination. J. Am. Chem. Soc. 136, 7777–7782 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    Serra, J., Parella, T. & Ribas, X. Au(III)-aryl intermediates in oxidant-free C-N and C-O cross-coupling catalysis. Chem. Sci. 8, 946–952 (2017).

    CAS  Article  Google Scholar 

  39. 39.

    Joost, M. et al. Oxidative addition of carbon–carbon bonds to gold. Angew. Chem. Int. Ed. 54, 14512–14516 (2015).

    Google Scholar 

  40. 40.

    Joost, M. et al. Facile oxidative addition of aryl iodides to gold(I) by ligand design: bending turns on reactivity. J. Am. Chem. Soc. 136, 14654–14657 (2014).

    CAS  Article  Google Scholar 

  41. 41.

    Zeineddine, A. et al. Rational development of catalytic Au(I)/Au(III) arylation involving mild oxidative addition of aryl halides. Nat. Commun. 8, 565 (2017).

    Article  Google Scholar 

  42. 42.

    Harper, M. J. et al. Oxidative addition, transmetalation, and reductive elimination at a 2,2-bipyridyl-ligated gold center. J. Am. Chem. Soc. 140, 4440–4445 (2018).

    CAS  Article  Google Scholar 

  43. 43.

    Martelli, G., Spagnolo, P. & Tiecco, M. Homolytic aromatic substitution by phenylethynyl radicals. J. Chem. Soc. B 0, 1413–1418 (1970).

    CAS  Article  Google Scholar 

  44. 44.

    Xie, J. et al. A highly efficient gold–catalyzed photoredox α–C(sp3)–H alkynylation of tertiary aliphatic amines with sunlight. Angew. Chem. Int. Ed. 54, 6046–6050 (2015).

    CAS  Article  Google Scholar 

  45. 45.

    Hashmi, A. S. K., Ramamurthi, T. D. & Rominger, F. On the trapping of vinylgold intermediates. Adv. Synth. Catal. 352, 971–975 (2010).

    CAS  Article  Google Scholar 

  46. 46.

    Lowry, M. S. et al. Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem. Mater. 17, 5712–5719 (2005).

    CAS  Article  Google Scholar 

  47. 47.

    Teders, M. et al. The energy-transfer-enabled biocompatible disulfide–ene reaction. Nat. Chem. 10, 981–988 (2018).

    CAS  Article  Google Scholar 

  48. 48.

    Porter, G. & Wilkinson, F. Energy transfer from the triplet state. Proc. R. Soc. A 264, 1–18 (1961).

    CAS  Article  Google Scholar 

  49. 49.

    Kaga, A. et al. Degenerative xanthate transfer to olefins under visible-light photocatalysis. Beilstein J. Org. Chem. 14, 3047–3058 (2018).

    CAS  Article  Google Scholar 

  50. 50.

    Lu, Z. & Yoon, T. P. Visible light photocatalysis of [2+2] styrene cycloadditions by energy transfer. Angew. Chem. Int. Ed. 51, 10329–10332 (2012).

    CAS  Article  Google Scholar 

  51. 51.

    Welin, E. R., Le, C., Arias-Rotondo, D. M., McCusker, J. K. & MacMillan, D. W. C. Photosensitized energy transfer-mediated organometallic catalysis through electronically excited nickel(II). Science 355, 380–385 (2017).

    CAS  Article  Google Scholar 

  52. 52.

    Creutz, S. E., Lotito, K. J., Fu, G. C. & Peters, J. C. Photoinduced Ullmann C–N coupling: demonstrating the viability of a radical pathway. Science 338, 647–651 (2012).

    CAS  Article  Google Scholar 

  53. 53.

    Yoo, W.-J., Tsukamoto, T. & Kobayashi, S. Visible light-mediated Ullmann-type C–N coupling reactions of carbazole derivatives and aryl iodides. Org. Lett. 17, 3640–3642 (2015).

    CAS  Article  Google Scholar 

  54. 54.

    Hwang, S. J. et al. Trap-free halogen photoelimination from mononuclear Ni(III) complexes. J. Am. Chem. Soc. 137, 6472–6475 (2015).

    CAS  Article  Google Scholar 

  55. 55.

    Shields, B. J. & Doyle, A. G. Direct C(sp 3)−H cross-coupling enabled by catalytic generation of chlorine radicals. J. Am. Chem. Soc. 138, 12719–12722 (2016).

    CAS  Article  Google Scholar 

  56. 56.

    Heitz, D. R., Tellis, J. C. & Molander, G. A. Photochemical nickel-catalyzed C–H arylation: synthetic scope and mechanistic investigations. J. Am. Chem. Soc. 138, 12715–12718 (2016).

    CAS  Article  Google Scholar 

  57. 57.

    Dumele, O., Wu, D., Trapp, N., Goroff, N. & Diederich, F. Halogen bonding of (iodoethynyl)benzene derivatives in solution. Org. Lett. 16, 4722–4725 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Sorbonne Université, CNRS and ANR HyperSiLight for funding and the Chinese Scholarship Council (for PhD grants to Z.X. and F.Z.). We are grateful to O. Khaled for HRMS. This work was granted access to the high performance computing (HPC) resources of the HPCaVe Centre at Sorbonne Université and the authors wish to acknowledge support from the ICMG Chemistry Nanobio Platform-PCECIC, Grenoble, for calculations facilities. J. Forté is acknowledged for the X-ray diffraction analyses.

Author information

Affiliations

Authors

Contributions

Z.X., V.C. and F.Z. performed the synthetic experiments and undertook all the physicochemical analyses. C.P. conducted the MS analyses. A.E., L.J. and T.L.S. performed and analysed the luminescence and transient absorption experiments. Y.G. and H.D. carried out computational studies and V.M-M., C.O. and L.F. designed the experiments, collated the data and prepared the manuscript.

Corresponding authors

Correspondence to Virginie Mouriès-Mansuy or Cyril Ollivier or Louis Fensterbank.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental procedures (synthesis, optimization, mechanistic and luminescence studies).

benzofurane 3aa.cif

Crystallographic data for compound 3aa. CCDC reference 1850903.

vinylgold 6.cif

Crystallographic data for compound 6. CCDC reference 1850902.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xia, Z., Corcé, V., Zhao, F. et al. Photosensitized oxidative addition to gold(i) enables alkynylative cyclization of o-alkylnylphenols with iodoalkynes. Nat. Chem. 11, 797–805 (2019). https://doi.org/10.1038/s41557-019-0295-9

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing