Catalytic living ring-opening metathesis polymerization with Grubbs’ second- and third-generation catalysts


In a conventional living ring-opening metathesis polymerization (ROMP), an equal number of ruthenium complexes to the number of polymer chains synthesized are required. This can lead to high loadings of ruthenium complexes when aiming for shorter polymers. Here, a reversible chain-transfer agent was used to produce living ROMP polymers from norbornene derivatives using catalytic amounts of Grubbs’ ruthenium complexes. The polymers obtained by this method showed all of the characteristics of a living polymerization (that is, good molecular weight control, narrow molecular weight dispersities and the ability to form block copolymers). Monomers carrying functional moieties such as ferrocene, coumarin or a triisopropylsilyl-protected primary alcohol could also be catalytically polymerized in a living fashion. The method presented follows a degenerative chain-transfer process and is more economical and environmentally friendly compared with previous living ROMP procedures as it utilizes only catalytic amounts of costly and toxic ruthenium complexes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Structure of the metathesis catalysts, CTAs and monomers investigated in this study.
Fig. 2: 1H NMR spectra (CD2Cl2; 400 MHz) of the reaction of CTA1 or CTA2 with POLY-G3.
Fig. 3: Possible reactions of CTA2 with the POLY-G3 ruthenium carbene complex.
Fig. 4: Mechanism of catalytic living ROMP, involving degenerative metathesis chain transfer.
Fig. 5: Plots of the polymer number average molecular weight versus the monomer-to-CTA ratio.

Data availability

All data generated or analysed during this study are included within the article and its Supplementary Information files.


  1. 1.

    Sutthasupa, S., Shiotsuki, M. & Sanda, F. Recent advances in ring-opening metathesis polymerization, and application to synthesis of functional materials. Polym. J. 42, 905–915 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    Choi, T.-L. & Grubbs, R. H. Controlled living ring-opening-metathesis polymerization by a fast-initiating ruthenium catalyst. Angew. Chem. Int. Ed. 42, 1743–1746 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    Chen, Y., Abdellatif, M. M. & Nomura, K. Olefin metathesis polymerization: some recent developments in the precise polymerizations for synthesis of advanced materials (by ROMP, ADMET). Tetrahedron 74, 619–643 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    Schrock, R. R. in Handbook of Metathesis 2nd edn, Vol. 1 (eds Grubbs, R. H. & Wenzel, A. G.) 1–27 (Wiley, 2015).

  5. 5.

    Buchmeiser, M. R. Molybdenum imido, tungsten imido and tungsten oxo alkylidene N-heterocyclic carbene olefin metathesis catalysts. Chem. Eur. J. 24, 14295–14301 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Ogba, O. M., Warner, N. C., O’Leary, D. J. & Grubbs, R. H. Recent advances in ruthenium-based olefin metathesis. Chem. Soc. Rev. 47, 4510–4544 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Demel, S., Schoefberger, W., Slugovc, C. & Stelzer, F. Benchmarking of ruthenium initiators for the ROMP of a norbornenedicarboxylic acid ester. J. Mol. Catal. A 200, 11–19 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    Trzaskowski, B. & Grela, K. Structural and mechanistic basis of the fast metathesis initiation by a six-coordinated ruthenium catalyst. Organometallics 32, 3625–3630 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Gu, H. et al. Tetrablock metallopolymer electrochromes. Angew. Chem. Int. Ed. 57, 2204–2208 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    Liaw, D.-J., Wang, K.-L., Lee, K.-R. & Lai, J.-Y. Ring‐opening metathesis polymerization of new norbornene‐based monomers containing various chromophores. J. Polym. Sci. A 45, 3022–3031 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    Riga, E. K. et al. Fluorescent ROMP monomers and copolymers for biomedical applications. Macromol. Chem. Phys. 218, 1700273 (2017).

    Article  Google Scholar 

  12. 12.

    Nguyen, H. V.-T. et al. Scalable synthesis of multivalent macromonomers for ROMP. ACS Macro Lett. 7, 472–476 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Schaefer, M., Hanik, N. & Kilbinger, A. F. M. ROMP copolymers for orthogonal click functionalizations. Macromolecules 45, 6807–6818 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    Yang, S. Y. & Weck, M. Modular covalent multifunctionalization of copolymers. ACS Macro Lett. 41, 346–351 (2008).

    CAS  Google Scholar 

  15. 15.

    Kumar, D. R., Lidster, B. J., Adams, R. W. & Turner, M. L. Understanding the microstructure of poly(p-phenylenevinylene)s prepared by ring-opening metathesis polymerization using 13C-labeled paracyclophanediene monomers. Macromolecules 51, 4572–4577 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Su, J. K. et al. Synthesis and mechanochemical activation of ladderene–norbornene block copolymers. J. Am. Chem. Soc. 140, 12388–12391 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Schaefer, M. et al. The role of mass and length in the sonochemistry of polymers. Macromolecules 49, 1630–1636 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Foster, J. C., Varlas, S., Blackman, L. D., Arkinstall, L. A. & O’Reilly, R. K. Ring-opening metathesis polymerization in aqueous media using a macroinitiator approach. Angew. Chem. Int. Ed. 57, 10672–10676 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    Lee, H.-K. et al. Superior cascade ring-opening/ring-closing metathesis polymerization and multiple olefin metathesis polymerization: enhancing the driving force for successful polymerization of challenging monomers. J. Am. Chem. Soc. 140, 10536–10545 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    Park, H. & Choi, T.-L. Fast tandem ring-opening/ring-closing metathesis polymerization from a monomer containing cyclohexene and terminal alkyne. J. Am. Chem. Soc. 134, 7270–7273 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Park, H., Lee, J.-K. & Choi, T.-L. Tandem ring-opening/ring-closing metathesis polymerization: relationship between monomer structure and reactivity. J. Am. Chem. Soc. 135, 10769–10775 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    Park, H., Kang, E.-H., Müller, L. & Choi, T.-L. Versatile tandem ring-opening/ring-closing metathesis polymerization: strategies for successful polymerization of challenging monomers and their mechanistic studies. J. Am. Chem. Soc. 138, 2244–2251 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Elling, B. R. & Xia, Y. Efficient and facile end group control of living ring-opening metathesis polymers via single addition of functional cyclopropenes. ACS Macro Lett. 7, 656–661 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Pal, S., Lucarini, F., Ruggi, A. & Kilbinger, A. F. M. Functional metathesis catalyst through ring closing enyne metathesis: one pot protocol for living heterotelechelic polymers. J. Am. Chem. Soc. 140, 3181–3185 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    Zhang, T., Fu, L. & Gutekunst, W. R. Practical synthesis of functional metathesis initiators using enynes. Macromolecules 41, 6497–6504 (2018).

    Article  Google Scholar 

  26. 26.

    Nagarkar, A. & Kilbinger, A. F. M. End functional ROMP polymers via degradation of a ruthenium Fischer type carbene. Chem. Sci. 5, 4687–4692 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    Hilf, S., Grubbs, R. H. & Kilbinger, A. F. M. End capping ring-opening olefin metathesis polymerization polymers with vinyl lactones. J. Am. Chem. Soc. 130, 11040–11048 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    Smith, D., Pentzer, E. B. & Nguyen, S. T. Bioactive and therapeutic ROMP polymers. Polym. Rev. 47, 419–459 (2007).

    CAS  Article  Google Scholar 

  29. 29.

    Sarapas, J. M., Backlund, C. M., deRonde, B. M., Minter, L. M. & Tew, G. N. ROMP- and RAFT-based guanidinium-containing polymers as scaffolds for protein mimic synthesis. Chem. Eur. J. 23, 6858–6863 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Xie, N. et al. A simple, modular synthesis of bifunctional peptide-polynorbornenes for apoptosis induction and fluorescence imaging of cancer cells. Polym. Chem. 9, 77–86 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Kang, C., Park, H., Lee, J. K. & Choi, T. L. Cascade polymerization via controlled tandem olefin metathesis/metallotropic 1,3-shift reactions for the synthesis of fully conjugated polyenynes. J. Am. Chem. Soc. 139, 11309–11312 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Kang, C., Kang, E. H. & Choi, T. L. Successful cyclopolymerization of 1,6-heptadiynes using first-generation Grubbs catalyst twenty years after its invention: revealing a comprehensive picture of cyclopolymerization using Grubbs catalysts. Macromolecules 50, 3153–3163 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Yang, S., Shin, S., Choi, I., Lee, J. & Choi, T.-L. Direct formation of large-area 2D nanosheets from fluorescent semiconducting homopolymer with orthorhombic crystalline orientation. J. Am. Chem. Soc. 139, 3082–3088 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    Kovacic, S., Kren, H., Krajnc, P., Koller, S. & Slugovc, C. The use of an emulsion templated microcellular poly(dicyclopentadiene-co-norbornene) membrane as a separator in lithium-ion batteries. Macromol. Rapid Commun. 34, 581–587 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    Zha, Y. P., Disabb-Miller, M. L., Johnson, Z. D., Hickner, M. A. & Tew, G. N. Metal-cation-based anion exchange membranes. J. Am. Chem. Soc. 134, 4493–4496 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    Bielawski, C. W., Benitez, D., Morita, T. & Grubbs, R. H. Synthesis of end-functionalized poly(norbornene)s via ring-opening metathesis polymerization. Macromolecules 34, 8610–8618 (2001).

    CAS  Article  Google Scholar 

  37. 37.

    Liu, P., Yasir, M., Ruggi, A. & Kilbinger, A. F. M. Heterotelechelic polymers by ring-opening metathesis and regioselective chain transfer. Angew. Chem. Int. Ed. 57, 914–917 (2018).

    CAS  Article  Google Scholar 

  38. 38.

    Chiefari, J. et al. Living free-radical polymerization by reversible addition–fragmentation chain transfer: the RAFT process. Macromolecules 31, 5559–5562 (1998).

    CAS  Article  Google Scholar 

  39. 39.

    Zhang, Y. H., Keaton, R. J. & Sita, L. R. Degenerative transfer living Ziegler–Natta polymerization: application to the synthesis of monomodal stereoblock polyolefins of narrow polydispersity and tunable block length. J. Am. Chem. Soc. 125, 9062–9069 (2003).

    CAS  Article  Google Scholar 

  40. 40.

    Kempe, R. How to polymerize ethylene in a highly controlled fashion? Chem. Eur. J. 13, 2764–2773 (2007).

    CAS  Article  Google Scholar 

  41. 41.

    Valente, A., Mortreux, A., Visseaux, M. & Zinck, P. Coordinative chain transfer polymerization. Chem. Rev. 113, 3836–3857 (2013).

    CAS  Article  Google Scholar 

  42. 42.

    Ajellal, N. et al. Metal-catalyzed immortal ring-opening polymerization of lactones, lactides and cyclic carbonates. Dalton Trans. 39, 8363–8376 (2010).

    CAS  Article  Google Scholar 

  43. 43.

    Uchiyama, M., Satoh, K. & Kamigaito, M. Cationic RAFT polymerization using ppm concentrations of organic acid. Angew. Chem. Int. Ed. 54, 1924–1928 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    Nagarkar, A. A. & Kilbinger, A. F. M. Catalytic living ring-opening metathesis polymerization. Nat. Chem. 7, 718–723 (2015).

    CAS  Article  Google Scholar 

  45. 45.

    Nagarkar, A. A. & Kilbinger, A. F. M. Retraction note: catalytic living ring-opening metathesis polymerization. Nat. Chem. 10, 573 (2018).

    CAS  Article  Google Scholar 

  46. 46.

    Nagarkar, A. A., Yasir, M., Crochet, A., Fromm, K. M. & Kilbinger, A. F. M. Tandem ring-opening–ring-closing metathesis for functional metathesis catalysts. Angew. Chem. Int. Ed. 55, 12343–12346 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    Matson, J. B., Virgil, S. C. & Grubbs, R. H. Pulsed-addition ring-opening metathesis polymerization: catalyst-economical syntheses of homopolymers and block copolymers. J. Am. Chem. Soc. 131, 3355–3362 (2009).

    CAS  Article  Google Scholar 

  48. 48.

    Kanaoka, S. & Grubbs, R. H. Synthesis of block copolymers of silicon-containing norbornene derivatives via living ring-opening metathesis polymerization catalyzed by a ruthenium carbene complex. Macromolecules 28, 4707–4713 (1995).

    CAS  Article  Google Scholar 

  49. 49.

    Song, J.-A. & Choi, T.-L. Seven-membered ring-forming cyclopolymerization of 1,8-nonadiyne derivatives using Grubbs catalysts: rational design of monomers and insights into the mechanism for olefin metathesis polymerizations. Macromolecules 50, 2724–2735 (2017).

    CAS  Article  Google Scholar 

  50. 50.

    Doncom, K. E., Blackman, L. D., Wright, D. B., Gibson, M. I. & O’Reilly, R. K. Dispersity effects in polymer self-assemblies: a matter of hierarchical control. Chem. Soc. Rev. 46, 4119–4134 (2017).

    CAS  Article  Google Scholar 

  51. 51.

    Jenkins, A. D., Jones, R. G. & Moad, G. Terminology for reversible-deactivation radical polymerization previously called ‘controlled’ radical or ‘living’ radical polymerization (IUPAC recommendations 2010). Pure Appl. Chem. 82, 483–491 (2010).

    CAS  Article  Google Scholar 

  52. 52.

    Daeffler, C. S. & Grubbs, R. H. Catalyst-dependent routes to ring-opening metathesis alternating copolymers of substituted oxanorbornenes and cyclooctene. Macromolecules 46, 3288–3292 (2013).

    CAS  Article  Google Scholar 

  53. 53.

    Elling, B. R. & Xia, Y. Living alternating ring-opening metathesis polymerization based on single monomer additions. J. Am. Chem. Soc. 137, 9922–9926 (2015).

    CAS  Article  Google Scholar 

Download references


A.F.M.K., M.Y. and P.L. thank the Swiss National Science Foundation for funding. I.K.T. thanks the National of Competence in Research ‘Bio-inspired Nanomaterials’ for a postdoctoral fellowship.

Author information




M.Y., P.L. and A.F.M.K. designed the experiments. M.Y. and P.L. performed the experiments. M.Y., I.K.T. and A.F.M.K. wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Andreas F. M. Kilbinger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Comprehensive information on compound synthesis and characterization, 1H and 13C-NMR spectra, size exclusion chromatography traces and MALDI-ToF mass spectrometric data.

Supplementary data sets

Raw data related to the 1H and 13C-NMR spectra shown in the manuscript and the supplementary information. The NMR spectroscopic data is reported as ASCII data pairs (ppm value, intensity). Size exclusion chromatography data related to figures in the Supplementary Information is reported as ASCII data pairs (time, intensity). MALDI-ToF mass spectrometric data related to Figures in the supplementary information is reported as ASCII data pairs (m/z, intensity). Data referring to the manuscript is found in a separate folder to the supplementary information. The figure numbers are reported as part of the filename.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yasir, M., Liu, P., Tennie, I.K. et al. Catalytic living ring-opening metathesis polymerization with Grubbs’ second- and third-generation catalysts. Nat. Chem. 11, 488–494 (2019).

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing