Article | Published:

The reductive C3 functionalization of pyridinium and quinolinium salts through iridium-catalysed interrupted transfer hydrogenation

Nature Chemistryvolume 11pages242247 (2019) | Download Citation


Aromatic rings are ubiquitous in organic chemistry and form the basis of many commercial products. Despite the numerous routes available for the preparation of aromatic compounds, there remain few methods that allow their conversion into synthetically useful partially saturated derivatives and even fewer that allow new C–C bonds to be formed at the same time. Here we set out to address this problem and uncover a unique catalytic partial reduction reaction that forms partially saturated azaheterocycles from aromatic precursors. In this reaction, methanol and formaldehyde are used for the reductive functionalization of pyridines and quinolines using catalytic iridium; thus, inexpensive and renewable feedstocks are utilized in the formation of complex N-heterocycles. By harnessing the formation of a nucleophilic enamine intermediate, the C–C bond-forming process reverses the normal pattern of reactivity and allows access to the C3 position of the arene. Mechanistic investigations using D-labelling experiments reveal the source of hydride added to the ring and show the reversible nature of the iridium-hydride addition.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

Supplementary information, chemical compound information and copies of spectra are available in the online version of this paper.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Baumann, M. & Baxendale, I. R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem. 9, 2265–2319 (2013).

  2. 2.

    Majumdar, K. C. & Chattopadhyay, S. K. Heterocycles in Natural Product Synthesis (Wiley-VCH, Weinheim, 2011).

  3. 3.

    Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

  4. 4.

    De Vries, J. G. & Elsevier, C. J. in Handbook of Homogeneous Hydrogenation Ch. 16 (Wiley-VCH, Weinheim, 2008).

  5. 5.

    Kӓllstrӧm, S. & Leino, R. Synthesis of pharmaceutically active compounds containing a disubstituted piperidine framework. Bioorg. Med. Chem. 16, 601–635 (2008).

  6. 6.

    Glorius, F., Spielkamp, N., Holle, S., Goddard, R. & Lehmann, C. W. Efficient asymmetric hydrogenation of pyridines. Angew. Chem. Int. Ed. 43, 2850–2852 (2004).

  7. 7.

    Renom-Carrasco, M. et al. Asymmetric hydrogenation of 3-substituted pyridinium salts. Chem. Eur. J. 22, 9528–9532 (2016).

  8. 8.

    Wang, X.-B., Zeng, W. & Zhou, Y.-G. Iridium-catalysed asymmetric hydrogenation of pyridine derivatives, 7,8-dihydro-quinolin-5(6H)-ones. Tetrahedron Lett. 49, 4922–4924 (2008).

  9. 9.

    Tang, W.-J. et al. Highly enantioselective hydrogenation of quinoline and pyridine derivatives with iridium-(P-phos) catalyst. Adv. Synth. Catal. 352, 1055–1062 (2010).

  10. 10.

    Ye, Z.-S. et al. Iridium-catalysed asymmetric hydrogenation of pyridinium salts. Angew. Chem. Int. Ed. 51, 10181–10184 (2012).

  11. 11.

    Chang, M. et al. Asymmetric hydrogenation of pyridinium salts with an iridium phosphole catalyst. Angew. Chem. Int. Ed. 53, 12761–12764 (2014).

  12. 12.

    Kita, Y., Iimuro, A., Hida, S. & Mashima, K. Iridium-catalysed asymmetric hydrogenation of pyridinium salts for constructing multiple stereogenic centres on piperidines. Chem. Lett. 43, 284–286 (2014).

  13. 13.

    Huang, W.-X. et al. Iridium-catalysed selective hydrogenation of 3-hydroxypyridinium salts: a facile synthesis of piperidin-3-ones. Org. Lett. 17, 1640–1643 (2015).

  14. 14.

    Rupeing, M. & Antonchick, A. P. Organocatalytic enantioselective reduction of pyridines. Angew. Chem. Int. Ed. 46, 4562–4565 (2007).

  15. 15.

    Taber, D. F. & Lambert, T. in Organic Synthesis Ch. 27–31 (Oxford Univ. Press, Oxford, 2015).

  16. 16.

    Wu, J., Tang, W., Pettman, A. & Xiao, J. Efficient and chemoselective reduction of pyridines to tetrahydropyridines and piperidines via rhodium-catalyzed transfer hydrogenation. Adv. Synth. Catal. 355, 35–40 (2013).

  17. 17.

    Talwar, D., Li, H. Y., Durham, E. & Xiao, J. A simple iridicycle catalyst for efficient transfer hydrogenation of N-heterocycles in water. Chem. Eur. J. 21, 5370–5379 (2015).

  18. 18.

    Comins, D. L., Joseph, S. P. & Goehring, R. R. Asymmetric synthesis of 2-alkyl(aryl)-2,3-dihydro-4-pyridones by addition of Grignard reagents to chiral 1-acyl-4-methoxypyridinium salts. J. Am. Chem. Soc. 116, 4719–4728 (1994).

  19. 19.

    Charette, A. B., Grenon, M., Lemire, A., Pourashraf, M. & Martel, J. Practical and highly regio- and stereoselective synthesis of 2-substituted dihydropyridines and piperidines: application to the synthesis of (–)-coniine. J. Am. Chem. Soc. 123, 11829–11830 (2001).

  20. 20.

    Fernández-Ibáñez, M. Á., Maciá, B., Pizzuti, M. G., Minnaard, A. J. & Feringa, B. L. Catalytic enantioselective addition of dialkylzinc reagents to N-acylpyridinium salts. Angew. Chem. Int. Ed. 48, 9339–9341 (2009).

  21. 21.

    Donohoe, T. J., Connolly, M. J. & Walton, L. Regioselective nucleophilic addition to pyridinium salts: a new route to substituted dihydropyridines. Org. Lett. 11, 5562–5565 (2009).

  22. 22.

    Nadeau, C., Aly, S. & Belyk, K. Rhodium-catalyzed enantioselective addition of boronic acids to N-benzylnicotinate salts. J. Am. Chem. Soc. 133, 2878–2880 (2011).

  23. 23.

    Chau, S. T., Lutz, J. P., Wu, K. & Doyle, A. G. Nickel-catalyzed enantioselective arylation of pyridinium ions: harnessing an iminium ion activation mode. Angew. Chem. Int. Ed. 52, 9153–9156 (2013).

  24. 24.

    Lutz, J. P., Chau, S. T. & Doyle, A. G. Nickel-catalyzed enantioselective arylation of pyridine. Chem. Sci. 7, 4105–4109 (2016).

  25. 25.

    Moran, J., Preetz, A., Mesch, R. A. & Krische, M. J. Iridium-catalysed direct C–C coupling of methanol and allenes. Nat. Chem. 3, 287–290 (2011).

  26. 26.

    Garza, V. J. & Krische, M. J. Hydroxymethylation beyond carbonylation: enantioselective iridium-catalyzed reductive coupling of formaldehyde with allylic acetates via enantiotopic π-facial discrimination. J. Am. Chem. Soc. 138, 3655–3658 (2016).

  27. 27.

    Elangovan, S. et al. Efficient and selective N-alkylation of amine with alcohols catalysed by manganese pincer complexes. Nat. Commun. 7, 12641 (2016).

  28. 28.

    Olah, G. A. Towards oil independence through renewable methanol chemistry. Angew. Chem. Int. Ed. 52, 104–107 (2013).

  29. 29.

    Sam, B., Breit, B. & Krische, M. J. Paraformaldehyde and methanol a C1 feedstocks in metal catalysed C–C couplings of π-unsaturated reactants: beyond hydroformylation. Angew. Chem. Int. Ed. 54, 3267–3274 (2015).

  30. 30.

    Natte, K., Neumann, H., Beller, M. & Jagadeesh, R. V. Transition-metal-catalyzed utilization of methanol as a C1 source in organic synthesis. Angew. Chem. Int. Ed. 56, 6384–6394 (2017).

  31. 31.

    Hamid, M. H. S. A., Slatford, P. A. & Williams, J. M. J. Borrowing hydrogen in the activation of alcohols. Adv. Synth. Catal. 349, 1555–1575 (2007).

  32. 32.

    Chan, L. K. M., Poole, D. L., Shen, D., Healy, M. P. & Donohoe, T. J. Rhodium-catalyzed ketone methylation using methanol under mild conditions: formation of alpha-branched products. Angew. Chem. Int. Ed. 53, 761–765 (2014).

  33. 33.

    Shen, D. et al. Hydrogen borrowing and interrupted hydrogen borrowing reactions of ketones and methanol, catalysed by iridium. Angew. Chem. Int. Ed. 54, 1642–1645 (2015).

  34. 34.

    Wang., S.-G. & You, S.-L. Hydrogenative dearomatization of pyridine and an asymmetric aza-Friedel–Crafts alkylation sequence. Angew. Chem. Int. Ed. 53, 2194–2197 (2014).

  35. 35.

    Sundararaju, B., Achard, M., Sharma, G. V. M. & Bruneau, C. sp 3 C–H bond activation with ruthenium(ii) catalysts and C(3)-alkylation of cyclic amines. J. Am. Chem. Soc. 133, 10340–10343 (2011).

  36. 36.

    Tan, Z., Jiang, H. & Zhang, M. Ruthenium-catalyzed dehydrogenative β-benzylation of 1,2,3,4-tetrahydroquinolines with aryl aldehydes: access to functionalized quinolines. Org. Lett. 18, 3177–3177 (2016).

  37. 37.

    Wu, J., Wang, C., Tang, W., Pettman, A. & Xiao, J. The remarkable effect of a simple ion: iodide-promoted transfer hydrogenation of heteroaromatics. Chem. Eur. J. 18, 9525–9529 (2012).

  38. 38.

    Wu, J., Talwar, D., Johnston, S., Yan, M. & Xiao, J. Acceptorless dehydrogenation of nitrogen heterocycles with a versatile iridium catalyst. Angew. Chem. Int. Ed. 52, 6983–6987 (2013).

Download references


The EPSRC (grant no. EP/L023121/1 and a DTP award) and Eli-Lilly provided financial support for this project.

Author information


  1. Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK

    • Alexandru Grozavu
    • , Hamish B. Hepburn
    • , Philip J. Smith
    • , Harish K. Potukuchi
    •  & Timothy J. Donohoe
  2. Eli Lilly and Company Limited, Erl Wood Manor, Windlesham, Surrey, UK

    • Peter J. Lindsay-Scott


  1. Search for Alexandru Grozavu in:

  2. Search for Hamish B. Hepburn in:

  3. Search for Philip J. Smith in:

  4. Search for Harish K. Potukuchi in:

  5. Search for Peter J. Lindsay-Scott in:

  6. Search for Timothy J. Donohoe in:


A.G. and T.J.D. conceived and designed the study. A.G., H.B.H., P.J.S. and H.K.P. performed the experiments and A.G., H.B.H., P.J.S., H.K.P., P.J.L.-S. and T.J.D. analysed the data for the compounds. A.G., H.B.H. and T.J.D. co-wrote the paper.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Timothy J. Donohoe.

Supplementary information

  1. Supplementary information

    Full synthetic protocols for the synthesis of all starting materials and products, full characterization data and spectra for all novel starting materials and products, additional screening information and additional mechanistic experiments

About this article

Publication history




Issue Date