Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum-state-controlled channel branching in cold Ne(3P2)+Ar chemi-ionization

Abstract

A prerequisite to gain a complete understanding of the most basic aspects of chemical reactions is the ability to perform experiments with complete control over the reactant degrees of freedom. By controlling these, details of a reaction mechanism can be investigated and ultimately manipulated. Here, we present a study of chemi-ionization—a fundamental energy-transfer reaction—under completely controlled conditions. The collision energy of the reagents was tuned from 0.02 K to 1,000 K, with the orientation of the excited Ne atom relative to Ar fully specified by an external magnetic field. Chemi-ionization of Ne(3P2) and Ar in these conditions enables a detailed investigation of how the reaction proceeds, and provides us with a means to control the branching ratio between the two possible reaction outcomes. The merged-beam experimental technique used here allows access to a low-energy regime in which the atoms dynamically reorient into a favourable configuration for reaction, irrespective of their initial orientations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the experimental apparatus that shows how the beam speeds affect the collision energy and how this is related spatially to the magnetic field.
Fig. 2: An example of mass spectra used to probe the steric effect and scan over the collision energy range.
Fig. 3: Experimental (red) state-dependent reactivities that quantify the steric effect are compared with theory (black).
Fig. 4: Ion yields of the AI and PI channels at different collision energies, Ecoll = 575 K (top), 175 K (middle) and 22 mK (bottom).
Fig. 5: The steric effect rapidly diminishes below 20 K and is lost long before the orientation angle becomes scrambled.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Dulieu, O. & Osterwalder, A. Cold Chemistry. Molecular Scattering and Reactivity Near Absolute Zero (Royal Society of Chemistry, Cambridge, 2018).

    Google Scholar 

  2. Brouard, M., Parker, D. H. & van de Meerakker, S. Taming molecular collisions using electric and magnetic fields. Chem. Soc. Rev. 43, 7279–7294 (2014).

    Article  CAS  Google Scholar 

  3. Onvlee, J. et al. Imaging quantum stereodynamics through Fraunhofer scattering of NO radicals with rare-gas atoms. Nat. Chem. 9, 226–233 (2017).

    Article  CAS  Google Scholar 

  4. Henson, A. B., Gersten, S., Shagam, Y., Narevicius, J. & Narevicius, E. Observation of resonances in Penning ionization reactions at sub-kelvin temperatures in merged beams. Science 338, 234–238 (2012).

    Article  CAS  Google Scholar 

  5. Jankunas, J., Bertsche, B., Jachymski, K., Hapka, M. & Osterwalder, A. Dynamics of gas phase Ne*+ NH3 and Ne*+ ND3 Penning ionisation at low temperatures. J. Chem. Phys. 140, 244302 (2014).

    Article  Google Scholar 

  6. Dong, W., Mukherjee, N. & Zare, R. N. Optical preparation of H2 rovibrational levels with almost complete population transfer. J. Chem. Phys. 139, 074204 (2013).

    Article  Google Scholar 

  7. Amarasinghe, C. & Suits, A. G. Intrabeam scattering for ultracold collisions. J. Phys. Chem. Lett. 8, 5153–5159 (2017).

    Article  CAS  Google Scholar 

  8. Gustafsson, M. et al. Observing the stereodynamics of chemical reactions using randomly oriented molecular beams. J. Chem. Phys. 124, 241105 (2006).

    Article  Google Scholar 

  9. Chefdeville, S. et al. Observation of partial wave resonances in low-energy O2–H2 inelastic collisions. Science 341, 1094–1096 (2013).

    Article  CAS  Google Scholar 

  10. De Miranda, M. et al. Controlling the quantum stereodynamics of ultracold bimolecular reactions. Nat. Phys. 7, 502 (2011).

    Article  Google Scholar 

  11. Stuhl, B. K., Hummon, M. T. & Ye, J. Cold state-selected molecular collisions and reactions. Ann. Rev. Phys. Chem. 65, 501–518 (2014).

    Article  CAS  Google Scholar 

  12. Ospelkaus, S. et al. Quantum-state controlled chemical reactions of ultracold potassium–rubidium molecules. Science 327, 853–857 (2010).

    Article  CAS  Google Scholar 

  13. Lavert-Ofir, E. et al. Observation of the isotope effect in sub-kelvin reactions. Nat. Chem. 6, 332–335 (2014).

    Article  CAS  Google Scholar 

  14. Perreault, W. E., Mukherjee, N. & Zare, R. N. Quantum control of molecular collisions at 1 kelvin. Science 358, 356–359 (2017).

    Article  CAS  Google Scholar 

  15. Wu, X. et al. A cryofuge for cold-collision experiments with slow polar molecules. Science 358, 645–648 (2017).

    Article  CAS  Google Scholar 

  16. Nichols, B. et al. Steric effects and quantum interference in the inelastic scattering of NO(X)+Ar. Chem. Sci. 6, 2202–2210 (2015).

    Article  CAS  Google Scholar 

  17. Barnwell, J., Loeser, J. & Herschbach, D. Angular correlations in chemical reactions. Statistical theory for four-vector correlations. J. Phys. Chem. 87, 2781–2786 (1983).

    Article  CAS  Google Scholar 

  18. Pan, H., Wang, F., Czakó, G. & Liu, K. Direct mapping of the angle-dependent barrier to reaction for Cl + CHD3 using polarized scattering data. Nat. Chem. 9, 1175–1180 (2017).

    Article  CAS  Google Scholar 

  19. Wang, F., Lin, J.-S. & Liu, K. Steric control of the reaction of CH stretch–excited CHD3 with chlorine atom. Science 331, 900–903 (2011).

    Article  CAS  Google Scholar 

  20. Aoiz, F. J. et al. A new perspective: imaging the stereochemistry of molecular collisions. Phys. Chem. Chem. Phys. 17, 30210–30228 (2015).

    Article  CAS  Google Scholar 

  21. Kasai, T., Stolte, S., Chandler, D. & González Ureña, A. Stereodynamics of chemical reactions. Eur. Phys. J. D 38, 1–2 (2006).

    Article  CAS  Google Scholar 

  22. Siska, P. E. Molecular-beam studies of Penning ionization. Rev. Mod. Phys. 65, 337–412 (1993).

    Article  CAS  Google Scholar 

  23. Gordon, S. D. S., Zou, J., Tanteri, S., Jankunas, J. & Osterwalder, A. Energy dependent stereodynamics of the Ne(3P2) +Ar reaction. Phys. Rev. Lett. 119, 053001 (2017).

    Article  Google Scholar 

  24. Zou, J., Gordon, S. D. S., Tanteri, S. & Osterwalder, A. Stereodynamics of N(3P2) reacting with Ar, Kr, Xe, and N2. J. Chem. Phys. 148, 164310 (2018).

    Article  Google Scholar 

  25. Arango, C. A., Shapiro, M. & Brumer, P. Cold atomic collisions: coherent control of Penning and associative ionization. Phys. Rev. Lett. 97, 193202 (2006).

    Article  Google Scholar 

  26. Arango, C. A., Shapiro, M. & Brumer, P. Coherent control of collision processes: Penning versus associative ionization. J. Chem. Phys. 125, 094315 (2006).

    Article  Google Scholar 

  27. Illenberger, E. & Niehaus, A. Velocity dependence of total Penning ionization cross sections. Z. Phys. B 20, 33–41 (1975).

    Article  CAS  Google Scholar 

  28. Bussert, W. et al. Ionizing collisions of laser-excited rare gas atoms. J. Phys. Colloq. 46, C1–199 (1985).

    Article  Google Scholar 

  29. Niehaus, A. Penning ionization. Ber. Bunsenges. Phys. Chem. 77, 632–640 (1973).

    CAS  Google Scholar 

  30. Falcinelli, S., Rosi, M., Pirani, F., Stranges, D. & Vecchiocattivi, F. Measurements of ionization cross sections by molecular beam experiments: information content on the imaginary part of the optical potential. J. Phys. Chem. A 120, 5169–5174 (2016).

    Article  CAS  Google Scholar 

  31. Hausamann, D. & Morgner, H. The heteronuclear rare gas ions: a simple model for the determination of the potential curves. Mol. Phys. 54, 1085 (1985).

    Article  CAS  Google Scholar 

  32. Op De Beek, S. S., Driessen, J. & Kokkelmans, S. Ionization widths for Ne(3l)–Ar systems (l = s,p): application to ionization and intramultiplet mixing cross sections. Phys. Rev. A. 56, 2792–2805 (1997).

    Article  CAS  Google Scholar 

  33. Aguilar-Navarro, A., Brunetti, B., Rosi, S., Vecchiocattivi, F. & Volpi, G. G. Velocity dependence of the cross section for Penning and associative ionization of argon atoms by metastable neon atoms. J. Chem. Phys. 82, 773–779 (1985).

    Article  CAS  Google Scholar 

  34. Miller, W. H. Theory of Penning ionization. I. Atoms. J. Chem. Phys. 52, 3563–3572 (1970).

    Article  CAS  Google Scholar 

  35. Zare, R. N. Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Wiley-Interscience, New York, 1988).

    Google Scholar 

  36. Verheijen, M. J. & Beijerinck, H. C. W. State selected total Penning ionisation cross sections for the systems Ne*(3P0, 3P2)+ Ar, Kr, Xe and N2 in the energy range 0.06 < E 0 (eV) < 8.0. Chem. Phys. 102, 255–273 (1986).

    Article  CAS  Google Scholar 

  37. Baudon, J. et al. Polarization effects in metastable neon atom (Ne(3P2)) on ground state neon atom collision at thermal energy. Chem. Phys. 145, 153–161 (1990).

    Article  CAS  Google Scholar 

  38. Osterwalder, A. Merged neutral beams. EPJ Tech. Instrum. 2, 10 (2015).

    Article  Google Scholar 

  39. Shagam, Y. & Narevicius, E. Sub-kelvin collision temperatures in merged neutral beams by correlation in phase-space. J. Phys. Chem. C 117, 22454–22461 (2013).

    Article  CAS  Google Scholar 

  40. Even, U. The Even–Lavie valve as a source for high intensity supersonic beam. EPJ Tech. Instrum. 2, 17 (2015).

    Article  Google Scholar 

  41. Driessen, J. P. J., Op De Beek, S. S., Somers, L. M. T., Beijerinck, H. C. W. & Verhaar, B. J. Autoionization widths for Ne(3s)–Ar and Ne(3p)–Ar collisions. Phys. Rev. A. 44, 167–185 (1991).

    Article  CAS  Google Scholar 

  42. Gregor, R. & Siska, P. Differential elastic scattering of Ne(3s 3P2,0) by Ar, Kr, and Xe: Optical potentials and their orbital interpretation. J. Chem. Phys. 74, 1078–1092 (1981).

    Article  CAS  Google Scholar 

  43. van de Meerakker, S. Y. T., Bethlem, H. L., Vanhaecke, N. & Meijer, G. Manipulation and control of molecular beams. Chem. Rev. 112, 4828–4878 (2012).

    Article  Google Scholar 

  44. Watanabe, D., Ohoyama, H., Matsumura, T. & Kasai, T. Characterization of an oriented metastable atom source based on a magnetic hexapole. Eur. Phys. J. D 38, 219–223 (2006).

    Article  CAS  Google Scholar 

  45. Jankunas, J., Reisyan, K. S., Rakitzis, T. P. & Osterwalder, A. Oriented O(3P2), Ne(3P2), and He(3S1) atoms emerging from a bent magnetic guide. Mol. Phys. 114, 245–252 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by EPFL and the Swiss Science Foundation (project number 200021_165975). J.J.O. and P.B. acknowledge the support by Natural Sciences and Engineering Research Council Canada.

Author information

Authors and Affiliations

Authors

Contributions

The experiment was conceived by A.O. and S.D.S.G. The experiment and data analysis were performed by S.D.S.G. The potential surfaces and observables were calculated by J.J.O. and P.B. All the authors contributed to the interpretation of the data and discussion of the results. The manuscript was written by S.D.S.G., A.O. and J.J.O. with additional comments and contributions from all the authors.

Corresponding author

Correspondence to Andreas Osterwalder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordon, S.D.S., Omiste, J.J., Zou, J. et al. Quantum-state-controlled channel branching in cold Ne(3P2)+Ar chemi-ionization. Nature Chem 10, 1190–1195 (2018). https://doi.org/10.1038/s41557-018-0152-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0152-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing