Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CARBON ELECTROCATALYSTS

N-doping goes sp-hybridized

Specific forms of nitrogen doping can endow carbon-based metal-free materials with electrocatalytic activity. Now, introducing sp-hybridized nitrogen atoms into some acetylenic sites of ultra-thin graphdiyne — a highly π-conjugated lamellar carbon allotrope — has led to excellent oxygen reduction reaction activity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: A timeline of the important steps in the development of carbon-based ORR electrocatalysts.
Fig. 2: Schematic representations of the two pericyclic synthetic routes for sp-N-doped GDY.

References

  1. 1.

    Gasteiger, H. A. & Marković, N. M. Science 324, 48–49 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    Shao, M., Chang, Q., Dodelet, J. P. & Chenitz, R. Chem. Rev. 116, 3594–3657 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Zhao, Y. et al. Nat. Chem. https://doi.org/10.1038/s41557-018-0100-1 (2018).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Gong, K., Du, F., Xia, Z., Durstock, M. & Dai, L. Science 323, 760–764 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    Dai, L., Xue, Y., Qu, L., Choi, H. J. & Baek, J. B. Chem. Rev. 115, 4823–4892 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S. Z. Chem. Soc. Rev. 44, 2060–2086 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Zhang, L. & Xia, Z. J. Phys. Chem. C 115, 11170–11176 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S. Z. J. Am. Chem. Soc. 136, 4394–4403 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Li, Y. et al. Nat. Nanotechnol. 7, 394–400 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Zitolo, A. et al. Nat. Mater. 14, 937–942 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Qu, L., Liu, Y., Baek, J.-B. & Dai, L. ACS Nano 4, 1321–1326 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    Shui, J., Wang, M., Du, F. & Dai, L. Sci. Adv. 1, e1400129 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Guo, D. et al. Science 351, 361–365 (2016).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Zheng, Y. et al. J. Am. Chem. Soc. 133, 20116–20119 (2011).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Zheng, Y., Jiao, Y., Ge, L., Jaroniec, M. & Qiao, S. Z. Angew. Chem. Int. Ed. 125, 3192–3198 (2013).

    Article  Google Scholar 

  16. 16.

    Tang, C. et al. Adv. Mater. 28, 6845–6851 (2016).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shi-Zhang Qiao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Qiao, SZ. N-doping goes sp-hybridized. Nature Chem 10, 900–902 (2018). https://doi.org/10.1038/s41557-018-0129-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing