Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

CARBON ELECTROCATALYSTS

N-doping goes sp-hybridized

Specific forms of nitrogen doping can endow carbon-based metal-free materials with electrocatalytic activity. Now, introducing sp-hybridized nitrogen atoms into some acetylenic sites of ultra-thin graphdiyne — a highly π-conjugated lamellar carbon allotrope — has led to excellent oxygen reduction reaction activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A timeline of the important steps in the development of carbon-based ORR electrocatalysts.
Fig. 2: Schematic representations of the two pericyclic synthetic routes for sp-N-doped GDY.

References

  1. Gasteiger, H. A. & Marković, N. M. Science 324, 48–49 (2009).

    Article  CAS  Google Scholar 

  2. Shao, M., Chang, Q., Dodelet, J. P. & Chenitz, R. Chem. Rev. 116, 3594–3657 (2016).

    Article  CAS  Google Scholar 

  3. Zhao, Y. et al. Nat. Chem. https://doi.org/10.1038/s41557-018-0100-1 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Gong, K., Du, F., Xia, Z., Durstock, M. & Dai, L. Science 323, 760–764 (2009).

    Article  CAS  Google Scholar 

  5. Dai, L., Xue, Y., Qu, L., Choi, H. J. & Baek, J. B. Chem. Rev. 115, 4823–4892 (2015).

    Article  CAS  Google Scholar 

  6. Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S. Z. Chem. Soc. Rev. 44, 2060–2086 (2015).

    Article  CAS  Google Scholar 

  7. Zhang, L. & Xia, Z. J. Phys. Chem. C 115, 11170–11176 (2011).

    Article  CAS  Google Scholar 

  8. Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S. Z. J. Am. Chem. Soc. 136, 4394–4403 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, Y. et al. Nat. Nanotechnol. 7, 394–400 (2012).

    Article  CAS  Google Scholar 

  10. Zitolo, A. et al. Nat. Mater. 14, 937–942 (2015).

    Article  CAS  Google Scholar 

  11. Qu, L., Liu, Y., Baek, J.-B. & Dai, L. ACS Nano 4, 1321–1326 (2010).

    Article  CAS  Google Scholar 

  12. Shui, J., Wang, M., Du, F. & Dai, L. Sci. Adv. 1, e1400129 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo, D. et al. Science 351, 361–365 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Zheng, Y. et al. J. Am. Chem. Soc. 133, 20116–20119 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Zheng, Y., Jiao, Y., Ge, L., Jaroniec, M. & Qiao, S. Z. Angew. Chem. Int. Ed. 125, 3192–3198 (2013).

    Article  Google Scholar 

  16. Tang, C. et al. Adv. Mater. 28, 6845–6851 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Zhang Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Qiao, SZ. N-doping goes sp-hybridized. Nature Chem 10, 900–902 (2018). https://doi.org/10.1038/s41557-018-0129-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0129-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing