Abstract

Tetracoordinate MIDA (N-methyliminodiacetic acid) boronates have found broad utility in chemical synthesis. Here, we describe mechanistic insights into the migratory aptitude of the MIDA boryl group in boron transfer processes, and show that the hemilability of the nitrogen atom on the MIDA ligand enables boron to mechanistically resemble either a hydride or a proton. The first case involves a 1,2-boryl shift, in which boron migrates as a nucleophile in its tetracoordinate form. The second case involves a neighbouring atom-promoted 1,4-boryl shift, in which boron migrates as an electrophile in its pseudo-tricoordinate form. Density functional theory studies and in situ NMR measurements all suggest that MIDA can act as a dynamic switch. These findings encouraged the development of novel migration processes involving boron that exploit the chameleonic behaviour of boron by acting as both a nucleophile and an electrophile, including the first report of a compound with a boronate functionality bound to carbon in the carboxylic acid oxidation state.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Fernandez, E. & Whiting, A. (eds) Synthesis and Application of Organoboron Compounds (Springer International, Cham, 2015).

  2. 2.

    Hall, D. G. (ed.) Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials 2nd rev. edn (Wiley, Weinheim, 2011).

  3. 3.

    Diaz, D. B. & Yudin, A. K. The versatility of boron in biological target engagement. Nat. Chem. 9, 731–742 (2017).

  4. 4.

    Lennox, A. J. J. & Lloyd-Jones, G. C. Selection of boron reagents for Suzuki–Miyaura coupling. Chem. Soc. Rev. 43, 412–443 (2014).

  5. 5.

    Molander, G. A. & Ellis, N. Organotrifluoroborates: protected boronic acids that expand the versatility of the Suzuki coupling reaction. Acc. Chem. Res. 40, 275–286 (2007).

  6. 6.

    Darses, S. & Genet, J.-P. Potassium organotrifluoroborates: new perspectives in organic synthesis. Chem. Rev. 108, 288–325 (2008).

  7. 7.

    Eros, G., Kushida, Y. & Bode, J. W. A reagent for the one-step preparation of potassium acyltrifluoroborates (KATs) from aryl- and heteroarylhalides. Angew. Chem. Int. Ed. 53, 7604–7607 (2014).

  8. 8.

    Gillis, E. P. & Burke, M. D. A simple and modular strategy for small molecule synthesis: iterative Suzuki–Miyaura coupling of B-protected haloboronic acid building blocks. J. Am. Chem. Soc. 129, 6716–6717 (2007).

  9. 9.

    Gillis, E. P. & Burke, M. D. Multistep synthesis of complex boronic acids from simple MIDA boronates. J. Am. Chem. Soc. 130, 14084–14085 (2008).

  10. 10.

    He, Z. & Yudin, A. K. Amphoteric α-boryl aldehydes. J. Am. Chem. Soc. 133, 13770–13773 (2011).

  11. 11.

    He, Z., Zajdlik, A., St. Denis, J. D., Assem, N. & Yudin, A. K. Boroalkyl group migration provides a versatile entry into α-aminoboronic acid derivatives. J. Am. Chem. Soc. 134, 9926–9929 (2012).

  12. 12.

    He, Z., Trinchera, P., Adachi, S., St Denis, J. D. & Yudin, A. K. Oxidative geminal functionalization of organoboron compounds. Angew. Chem. Int. Ed. 51, 11092–11096 (2012).

  13. 13.

    Zajdlik, A. et al. α-Boryl isocyanides enable facile preparation of bioactive boropeptides. Angew. Chem. Int. Ed. 52, 8411–8415 (2013).

  14. 14.

    He, Z., Zajdlik, A. & Yudin, A. K. Air- and moisture-stable amphoteric molecules: enabling reagents in synthesis. Acc. Chem. Res. 47, 1029–1040 (2014).

  15. 15.

    St Denis, J. D., He, Z. & Yudin, A. K. Amphoteric α-boryl aldehyde linchpins in the synthesis of heterocyles. ACS Catal. 5, 5373–5379 (2015).

  16. 16.

    Adachi, S. et al. Condensation-driven assembly of boron-containing bis(heteroaryl) motifs using a linchpin approach. Org. Lett. 17, 5594–5597 (2015).

  17. 17.

    Diaz, D. B. et al. Synthesis of aminoboronic acid derivatives from amines and amphoteric boryl carbonyl compounds. Angew. Chem. Int. Ed. 55, 12659–12663 (2016).

  18. 18.

    Lee, C. F. et al. Oxalyl boronates enable modular synthesis of bioactive imidazoles. Angew. Chem. Int. Ed. 56, 6264–6267 (2017).

  19. 19.

    Lee, S. J., Gray, K. C., Paek, J. S. & Burke, M. D. Simple, efficient, and modular synthesis of polyene natural products via iterative cross-coupling. J. Am. Chem. Soc. 130, 466–468 (2008).

  20. 20.

    Wang, C. & Glorius, F. Controlled iterative cross-coupling: on the way to the automation of organic synthesis. Angew. Chem. Int. Ed. 48, 2–7 (2009).

  21. 21.

    Woerly, E. M., Roy, J. & Burke, M. D. Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction. Nat. Chem. 6, 484–491 (2014).

  22. 22.

    Gillis, E. P. & Burke, M. D. Iterative cross-coupling with MIDA boronates: towards a general platform for small molecule synthesis. Aldrichimica Acta 42, 17–27 (2009).

  23. 23.

    St. Denis, J. D. et al. Boron-containing enamine and enamide linchpins in the synthesis of nitrogen heterocycles. J. Am. Chem. Soc. 136, 17669–17673 (2014).

  24. 24.

    Li, J. et al. Synthesis of many different types of organic small molecules using one automated process. Science 347, 1221–1226 (2015).

  25. 25.

    Gonzalez, J. A. et al. MIDA boronates are hydrolysed fast and slow by two different mechanisms. Nat. Chem. 8, 1067–1075 (2016).

  26. 26.

    Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C–H activation for the construction of C–B bonds. Chem. Rev. 110, 890–931 (2010).

  27. 27.

    Blackett, B. N., Coxon, J. M., Hartshorn, M. P. & Richards, K. E. The deuterium isotope effect for the boron trifluoride catalyzed rearrangement of 2-methyl-1,2-epoxypropane. Aust. J. Chem. 23, 839–840 (1970).

  28. 28.

    Fraile, J. M., Mayoral, J. A. & Salvatella, L. Theoretical study on the BF3-catalyzed Meinwald rearrangement reaction. J. Org. Chem. 79, 5993–5999 (2014).

  29. 29.

    Tomasi, J., Mennucci, B. & Cance, E. The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J. Mol. Struct. 464, 211–226 (1999).

  30. 30.

    Frisch, M. J. et al. Gaussian 09, Revision C.01 (Gaussian, Inc., 2009).

  31. 31.

    Dean, J. A. (ed.) Lange’s Handbook of Chemistry 15th edn (McGraw-Hill. New York, NY, 1998).

  32. 32.

    Eberlin, L., Bertrand, C. & Whiting, A. Regioisomeric and substituent effects upon the outcome of the reaction of 1-borodienes with nitrosoarene compounds. J. Org. Chem. 80, 6574–6583 (2015).

  33. 33.

    Kisu, H., Sakaino, H., Ito, F., Yamashita, M. & Nozaki, K. A qualitative analysis of a ‘Bora-Brook rearrangement’: the ambident reactivity of boryl-substituted alkoxide including the carbon-to-oxygen migration of a boryl group. J. Am. Chem. Soc. 138, 3548–3552 (2016).

  34. 34.

    Brook, A. G. & Yu, Z. Reactions of amines with silenes and acylsilanes. Organometallics 19, 1859–1863 (2000).

  35. 35.

    Brook, A. G., MacRae, D. M. & Bassindale, A. R. The mechanism of the β-ketosilane to siloxyalkene thermal rearrangement. J. Organomet. Chem. 86, 185–192 (1975).

  36. 36.

    Blackmond, D. G. Reaction progress kinetic analysis: a powerful methodology for mechanistic studies of complex catalytic reactions. Angew. Chem. Int. Ed. 44, 4302–4320 (2005).

  37. 37.

    Blackmond, D. G. Kinetic profiling of catalytic organic reactions as a mechanistic tool. J. Am. Chem. Soc. 137, 10852–10866 (2015).

  38. 38.

    Garrett, G. E. & Taylor, M. S. A nonlinear ordinary differential equation for generating graphical rate equations from concentration versus time data. Top. Catal. 60, 554–563 (2017).

  39. 39.

    Hansch, C. & Leo, A. Substituent Constants for Correlation Analysis in Chemistry and Biology (Wiley, New York, NY, 1979).

  40. 40.

    Hansch, C., Leo, A. & Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991).

  41. 41.

    Swain, C. G. & Lupton, E. C. Jr Field and resonance components of substituent effects. J. Am. Chem. Soc. 90, 4328–4337 (1968).

  42. 42.

    Swain, C. G., Unger, S. H., Rosenquist, N. R. & Swain, M. S. Substituent effects on chemical reactivity. Improved evaluation of field and resonance components. J. Am. Chem. Soc. 105, 492–502 (1983).

  43. 43.

    Brook, A. G. Molecular rearrangements of organosilicon compounds. Acc. Chem. Res. 7, 77–84 (1974).

  44. 44.

    Glendening, E. D., Reed, A. E., Carpenter, J. E. & Weinhold, F. NBO Version 3.1 (TCI, Univ. Wisconsin, Madison, WI, 1998).

  45. 45.

    Carroll, F. A. (ed.) Perspectives on Structure and Mechanism in Organic Chemistry (Brooks/Cole Publishing Company, Pacific Grove, CA, 1998).

  46. 46.

    Kende, A. S. (ed.) Organic Reactions Vol. 35 (Wiley, New York, NY, 1988).

Download references

Acknowledgements

A.K.Y. acknowledges financial support from the Natural Science and Engineering Research Council (NSERC). T.D. acknowledges the computing infrastructure provided by SHARCNET (www.sharcnet.ca). The authors also acknowledge NSERC and the Canadian Foundation for Innovation, Project Number 19119, and the Ontario Research Fund for funding of the Centre for Spectroscopic Investigation of Complex Organic Molecules and Polymers. Helpful discussions with A.P. Dicks (University of Toronto), H. Soor (University of Toronto) and C. Apte (University of Toronto) are appreciated. The authors thank D. Burns, J. Sheng and S. Nokhrin for assistance with NMR spectroscopic experiments, and H. Foy (Brock University) for assistance in the computational calculations on the 1,4-migration. C.F.L., D.B.D. and A.H. thank NSERC for PGS-D funding. S.J.K. thanks NSERC for CGS-D funding. This paper is in memory of Dr Zhi He.

Author information

Author notes

  1. These authors contributed equally: C. Frank Lee, Diego B. Diaz.

Affiliations

  1. Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada

    • C. Frank Lee
    • , Diego B. Diaz
    • , Aleksandra Holownia
    • , Sherif J. Kaldas
    • , Sean K. Liew
    • , Graham E. Garrett
    •  & Andrei K. Yudin
  2. Department of Chemistry, Brock University, St. Catharines, Ontario, Canada

    • Travis Dudding

Authors

  1. Search for C. Frank Lee in:

  2. Search for Diego B. Diaz in:

  3. Search for Aleksandra Holownia in:

  4. Search for Sherif J. Kaldas in:

  5. Search for Sean K. Liew in:

  6. Search for Graham E. Garrett in:

  7. Search for Travis Dudding in:

  8. Search for Andrei K. Yudin in:

Contributions

A.K.Y. conceived the idea. Experimental work was conducted by C.F.L., D.B.D., A.H., S.J.K. and S.K.L. Kinetic data were processed and analysed by G.E.G. Computational work was conducted by T.D. The manuscript was written by C.F.L., D.B.D. and A.K.Y.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Travis Dudding or Andrei K. Yudin.

Supplementary information

  1. Supplementary information

    Full experimental procedures, computational details and experimental data

  2. Supplementary dataset

    Eyring data processing and fitting

  3. Supplementary dataset

    Hammett data processing and fitting

  4. Supplementary dataset

    Product inhibition data processing and fitting

  5. Calculations archive file

    Raw coordinate files for the computational studies

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41557-018-0097-5