Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metathesis-active ligands enable a catalytic functional group metathesis between aroyl chlorides and aryl iodides


Current methods for functional group interconversion have, for the most part, relied on relatively strong driving forces which often require highly reactive reagents to generate irreversibly a desired product in high yield and selectivity. These approaches generally prevent the use of the same catalytic strategy to perform the reverse reaction. Here we describe a catalytic functional group metathesis approach to interconvert, under CO-free conditions, two synthetically important classes of electrophiles that are often employed in the preparation of pharmaceuticals and agrochemicals—aroyl chlorides (ArCOCl) and aryl iodides (ArI). Our reaction design relies on the implementation of a key reversible ligand C–P bond cleavage event, which enables a non-innocent, metathesis-active phosphine ligand to mediate a rapid aryl group transfer between the two different electrophiles. Beyond enabling a practical and safer approach to the interconversion of ArCOCl and ArI, this type of ligand non-innocence provides a blueprint for the development of a broad range of functional group metathesis reactions employing synthetically relevant aryl electrophiles.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Conceptual blueprint for the development of a functional group metathesis reaction.
Fig. 2: Mechanistic hypothesis and preliminary experiments.
Fig. 3: Experimental evidence for the proposed functional group metathesis mechanism based on metathesis-active ligands.


  1. 1.

    Smith, M. B.March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. (Wiley, Hoboken, 2013).

    Google Scholar 

  2. 2.

    Terrier, F. Modern Nucleophilic Aromatic Substitution (Wiley, Hoboken, 2013).

    Book  Google Scholar 

  3. 3.

    Ackermann, L. Modern Arylation Methods (Wiley: Hoboken, 2009).

    Book  Google Scholar 

  4. 4.

    Friis, S. D., Lindhardt, A. T. & Skrydstrup, T. The development and application of two-chamber reactors and carbon monoxide precursors for safe carbonylation reactions. Acc. Chem. Res. 49, 594–605 (2016).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Wu, L., Liu, Q., Jackstell, R. & Beller, M. Carbonylations of alkenes with CO surrogates. Angew. Chem. Int. Ed. 53, 6310–6320 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    Zollinger, H. Diazo Chemistry I: Aromatic and Heteroaromatic Compounds 11–37 (VCH, Weinheim, 1994).

  7. 7.

    Quesnel, J. S. & Arndtsen, B. A. A palladium-catalyzed carbonylation approach to acid chloride synthesis. J. Am. Chem. Soc. 135, 16841–16844 (2013).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Quesnel, J. S. et al. Computational study of the palladium-catalyzed carbonylative synthesis of aromatic acid chlorides: the synergistic effect of PtBu3 and CO on reductive elimination. Chem. Eur. J. 22, 15107–15118 (2016).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Ohno, K. & Tsuji, J. Organic synthesis by means of noble metal compounds. XXXV. Novel decarbonylation reactions of aldehydes and acyl halides using rhodium complexes. J. Am. Chem. Soc. 90, 99–107 (1968).

    CAS  Article  Google Scholar 

  10. 10.

    Malapit, C. A., Ichiishi, N. & Sanford, M. S. Pd-catalyzed decarbonylative cross-couplings of aroyl chlorides. Org. Lett. 19, 4142–4145 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Petrone, D. A., Ye, J. & Lautens, M. Modern transition-metal-catalyzed carbon−halogen bond formation. Chem. Rev. 116, 8003–8104 (2016).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Ochiai, H., Uetake, Y., Niwa, T. & Hosoya, T. Rhodium-catalyzed decarbonylative borylation of aromatic thioesters for facile diversification of aromatic carboxylic acids. Angew. Chem. Int. Ed. 56, 2482–2486 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Perry, G. J. P., Quibell, J. M., Panigrahi, A. & Larrosa, I. Transition-metal-free decarboxylative iodination: new routes for decarboxylative oxidative cross-couplings. J. Am. Chem. Soc. 139, 11527–11536 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Roy, A. H. & Hartwig, J. F. Directly observed reductive elimination of aryl halides from monomeric arylpalladium(ii) halide complexes. J. Am. Chem. Soc. 125, 13944–13945 (2003).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Roy, A. H. & Hartwig, J. F. Reductive elimination of aryl halides from palladium(ii). J. Am. Chem. Soc. 123, 1232–1233 (2001).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Shen, X., Hyde, A. M. & Buchwald, S. L. Palladium-catalyzed conversion of aryl and vinyl triflates to bromides and chlorides. J. Am. Chem. Soc. 132, 14076–14078 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Grubbs, R. H. Handbook of Metathesis (Wiley, Weinheim, 2003).

    Book  Google Scholar 

  18. 18.

    Fürstner, A. Alkyne metathesis on the rise. Angew. Chem. Int. Ed. 52, 2794–2819 (2013).

    Article  CAS  Google Scholar 

  19. 19.

    Geyer, A. M., Gdula, R. L., Wiedner, E. S. & Johnson, M. J. A. Catalytic nitrile–alkyne cross-metathesis. J. Am. Chem. Soc. 129, 3800–3801 (2007).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Ludwig, J. R., Zimmerman, P. M., Gianino, J. B. & Schindler, C. S. Iron(iii)-catalysed carbonyl–olefin metathesis. Nature 533, 374–379 (2016).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Ma, L. et al. FeCl3-catalyzed ring-closing carbonyl–olefin metathesis. Angew. Chem. Int. Ed. 55, 10410–10413 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Chung, R., Vo, A. & Hein, J. E. Copper-catalyzed hydrogen/iodine exchange in terminal and 1-iodoalkynes. ACS Catal. 7, 2505–2510 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Lyons, J. E. Group VIII metal complexes as catalysts for halogen exchange between alkyl halides. J. Chem. Soc. Chem. Commun. 418–419 (1975).

  24. 24.

    Ackerman, L. K. G., Lovell, M. M. & Weix, D. J. Multimetallic catalysed cross-coupling of aryl bromides with aryl triflates. Nature 524, 454–457 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    van der Vlugt, J. I. & Reek, J. N. H. Neutral tridentate PNP ligands and their hybrid analogues: versatile non-innocent scaffolds for homogeneous catalysis. Angew. Chem. Int. Ed. 48, 8832–8846 (2009).

    Article  CAS  Google Scholar 

  26. 26.

    Lyaskovskyy, V. & de Bruin, B. Redox non-innocent ligands: versatile new tools to control catalytic reactions. ACS Catal. 2, 270–279 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    Abatjoglou, A. G. & Bryant, D. R. Aryl group interchange between triarylphosphines catalyzed by Group VIII transition metals. Organometallics 3, 932–934 (1984).

    CAS  Article  Google Scholar 

  28. 28.

    Grushin, V. V. Thermal stability, decomposition paths, and Ph/Ph exchange reactions of [(Ph3P)2Pd(Ph)X] (X = I, Br, Cl, F, and HF2). Organometallics 19, 1888–1900 (2000).

    CAS  Article  Google Scholar 

  29. 29.

    Lian, Z., Bhawal, B. N., Yu, P. & Morandi, B. Palladium-catalyzed carbon–sulfur or carbon–phosphorus bond metathesis by reversible arylation. Science 356, 1059–1063 (2017).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Baba, K., Masuya, Y., Chatani, N. & Tobisu, M. Palladium-catalyzed cyclization of bisphosphines to phosphacycles via the cleavage of two carbon–phosphorus bonds. Chem. Lett. 46, 1296–1299 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Kong, K.-C. & Cheng, C.-H. Facile aryl−aryl exchange between the palladium center and phosphine ligands in palladium(ii) complexes. J. Am. Chem. Soc. 113, 6313–6315 (1991).

    CAS  Article  Google Scholar 

  32. 32.

    Goodson, F. E., Wallow, T. I. & Novak, B. M. Mechanistic studies on the aryl−aryl interchange reaction of ArPdL2I (L = triarylphosphine) complexes. J. Am. Chem. Soc. 119, 12441–12453 (1997).

    CAS  Article  Google Scholar 

  33. 33.

    Fiebig, L., Schlörer, N., Schmalz, H.-G. & Schäfer, M. Aryl−phenyl scrambling in intermediate organopalladium complexes: a gas-phase study of the Mizoroki–Heck reaction. Chem. Eur. J. 20, 4906–4910 (2014).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Marcoux, D. & Charette, A. B. Palladium-catalyzed synthesis of functionalized tetraarylphosphonium salts. J. Org. Chem. 73, 590–593 (2008).

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Sakamoto, M., Shimizu, I. & Yamamoto, A. Palladium-catalyzed cleavage of P–C bonds in quaternary phosphonium salts and its applications to organic synthesis. Chem. Lett. 24, 1101–1102 (1995).

    Article  Google Scholar 

  36. 36.

    Hwang, L. K., Na, Y., Lee, J., Do, Y. & Chang, S. Tetraarylphosphonium halides as arylating reagents in Pd-catalyzed heck and cross-coupling reactions. Angew. Chem. Int. Ed. 44, 6166–6169 (2005).

    CAS  Article  Google Scholar 

  37. 37.

    Miloserdov, F. M. et al. The challenge of palladium-catalyzed aromatic azidocarbonylation: from mechanistic and catalyst deactivation studies to a highly efficient process. Organometallics 33, 736–752 (2014).

    CAS  Article  Google Scholar 

Download references


We thank Z. K. Wickens (Harvard University) for a critical proofreading of this manuscript. Generous funding from the Max-Planck-Society, the Max-Planck-Institut für Kohlenforschung and LG Chem (fellowship to Y.H.L.) is acknowledged. We thank B. List for sharing analytical equipment, and our NMR spectroscopy, mass spectrometry and X-ray departments for technical assistance.

Author information




Y.H.L. and B.M. conceived the project and prepared the manuscript. B.M. directed the work. Y.H.L. developed and studied the reaction experimentally. Both the authors analysed the data.

Corresponding author

Correspondence to Bill Morandi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary experimental details and compound characterization data

Crystallographic data

CIF for compound 70; CCDC reference: 1829364

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.H., Morandi, B. Metathesis-active ligands enable a catalytic functional group metathesis between aroyl chlorides and aryl iodides. Nature Chem 10, 1016–1022 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing