The human DNA repair enzyme MUTYH excises mispaired adenine residues in oxidized DNA. Homozygous MUTYH mutations underlie the autosomal, recessive cancer syndrome MUTYH-associated polyposis. We report a MUTYH variant, p.C306W (c.918C>G), with a tryptophan residue in place of native cysteine, that ligates the [4Fe4S] cluster in a patient with colonic polyposis and family history of early age colon cancer. In bacterial MutY, the [4Fe4S] cluster is redox active, allowing rapid localization to target lesions by long-range, DNA-mediated signalling. In the current study, using DNA electrochemistry, we determine that wild-type MUTYH is similarly redox-active, but MUTYH C306W undergoes rapid oxidative degradation of its cluster to [3Fe4S]+, with loss of redox signalling. In MUTYH C306W, oxidative cluster degradation leads to decreased DNA binding and enzyme function. This study confirms redox activity in eukaryotic DNA repair proteins and establishes MUTYH C306W as a pathogenic variant, highlighting the essential role of redox signalling by the [4Fe4S] cluster.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Markkanen, E., Dorn, J. & Hubscher, U. MUTYH DNA glycosylase: the rationale for removing undamaged bases from the DNA. Front. Genet. 4, 18 (2013).

  2. 2.

    Al-Tassan, N. et al. Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nat. Genet. 30, 227–232 (2002).

  3. 3.

    Sampson, J. R. et al. Autosomal recessive colorectal adenomatous polyposis due to inherited mutations of MYH. Lancet 362, 39–41 (2003).

  4. 4.

    Sieber, O. M. et al. Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N. Engl. J. Med. 348, 791–799 (2003).

  5. 5.

    Cleary, S. P. et al. Germline MutY human homologue mutations and colorectal cancer: a multisite case–control study. Gastroenterology 136, 1251–1260 (2009).

  6. 6.

    Jones, N. et al. Increased colorectal cancer incidence in obligate carriers of heterozygous mutations in MUTYH. Gastroenterology 137, 489–494 (2009).

  7. 7.

    Out, A. A. et al. Leiden Open Variation Database of the MUTYH gene. Human Mutat. 31, 1205–1215 (2010).

  8. 8.

    Maio, N. & Rouault, T. A. Iron–sulfur cluster biogenesis in mammalian cells: new insights into the molecular mechanisms of cluster delivery. Biochim. Biophys. Acta 1853, 1493–1512 (2015).

  9. 9.

    Alseth, I. et al. The Saccharomyces cerevisiae homologues of endonuclease III from Escherichia coli, Ntg1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast. Mol. Cell Biol. 19, 3779–3787 (1999).

  10. 10.

    Trasvina-Arenas, C. H., Lopez-Castillo, L. M., Sanchez-Sandoval, E. & Brieba, L. G. Dispensability of the [4Fe-4S] cluster in novel homologues of adenine glycosylase MutY. FEBS J. 283, 521–540 (2016).

  11. 11.

    Cunningham, R. P. et al. Endonuclease III is an iron–sulfur protein. Biochemistry 28, 4450–4455 (1989).

  12. 12.

    Porello, S. L., Cannon, M. J. & David, S. S. A substrate recognition role for the [4Fe-4S]2+ cluster of the DNA repair glycosylase MutY. Biochemistry 37, 6465–6475 (1998).

  13. 13.

    Boal, A. K. et al. DNA-bound redox activity of DNA repair glycosylases containing [4Fe-4S] clusters. Biochemistry 44, 8397–8407 (2005).

  14. 14.

    Gorodetsky, A. A., Boal, A. K. & Barton, J. K. Direct electrochemistry of endonuclease III in the presence and absence of DNA. J. Am. Chem. Soc. 128, 12082–12083 (2006).

  15. 15.

    Arnold, A. R., Grodick, M. A. & Barton, J. K. DNA charge transport: from chemical principles to the cell. Cell Chem. Biol. 23, 183–197 (2016).

  16. 16.

    O’Brien, E., Silva, R. M. & Barton, J. K. Redox signaling through DNA. Isr. J. Chem. 56, 705–723 (2016).

  17. 17.

    Yavin, E. et al. Protein–DNA charge transport: redox activation of a DNA repair protein by guanine radical. Proc. Natl Acad. Sci. USA 102, 3546–3551 (2005).

  18. 18.

    Boal, A. K. et al. Redox signaling between DNA repair proteins for efficient lesion detection. Proc. Natl Acad. Sci. USA 106, 15237–15242 (2009).

  19. 19.

    D’Agostino, V. G. et al. Functional analysis of MUTYH mutated proteins associated with familial adenomatous polyposis. DNA Repair 9, 700–707 (2010).

  20. 20.

    Kundu, S., Brinkmeyer, M. K., Livingston, A. L. & David, S. S. Adenine removal activity and bacterial complementation with the human MutY homologue (MUTYH) and Y165C, G382D, P391L and Q324R variants associated with colorectal cancer. DNA Repair (Amst.) 8, 1400–1410 (2009).

  21. 21.

    Porello, S. L., Leyes, A. E. & David, S. S. Single-turnover and pre-steady-state kinetics of the reaction of the adenine glycosylase MutY with mismatch-containing DNA substrates. Biochemistry 37, 14756–14764 (1998).

  22. 22.

    Rich, R. L. & Myszka, D. G. Higher-throughput, label-free, real-time molecular interaction analysis. Anal. Biochem 361, 1–6 (2007).

  23. 23.

    Profrock, D. & Prange, A. Inductively coupled plasma-mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: a review of challenges, solutions, and trends. Appl. Spectrosc. 66, 843–868 (2012).

  24. 24.

    Pheeney, C. G., Arnold, A. R., Grodick, M. A. & Barton, J. K. Multiplexed electrochemistry of DNA-bound metalloproteins. J. Am. Chem. Soc. 135, 11869–11878 (2013).

  25. 25.

    Boon, E. M., Salas, J. E. & Barton, J. K. An electrical probe of protein–DNA interactions on DNA-modified surfaces. Nat. Biotechnol. 20, 282–286 (2002).

  26. 26.

    Kelley, S. O., Barton, J. K., Jackson, N. M. & Hill, M. G. Electrochemistry of methylene blue bound to a DNA-modified electrode. Bioconjug. Chem. 8, 31–37 (1997).

  27. 27.

    Pope, M. A. & David, S. S. DNA damage recognition and repair by the murine MutY homologue. DNA Repair 4, 91–102 (2005).

  28. 28.

    Johnson, M. K., Duderstadt, R. E. & Duin, E. C. Biological and synthetic [Fe3S4] clusters. Adv. Inorg. Chem. 47, 1–82 (1999).

  29. 29.

    Sweeney, W. V. & Rabinowitz, J. C. Proteins containing 4Fe-4S clusters: an overview. Annu. Rev. Biochem 49, 139–161 (1980).

  30. 30.

    Duff, J. L. C., Breton, J. L. J., Butt, J. N., Armstrong, F. A. & Thomson, A. J. Novel redox chemistry of [3Fe-4S] clusters: Electrochemical characterization of the all-Fe(ii) form of the [3Fe-4S] cluster generated reversibly in various proteins and its spectroscopic investigation in Sulfolobus acidocaldarius ferredoxin. J. Am. Chem. Soc. 118, 8593–8603 (1996).

  31. 31.

    Netz, D. J. A. et al. Eukaryotic DNA polymerases require an iron–sulfur cluster for the formation of active complexes. Nat. Chem. Biol. 8, 125–132 (2012).

  32. 32.

    Good, N. E. et al. Hydrogen ion buffers for biological research. Biochemistry 5, 467 (1966).

  33. 33.

    Ugwu, S. O. The effect of buffers on protein conformational stability. Pharm. Technol. 28, 86–108 (2004).

  34. 34.

    Kundu, S., Brinkmeyer, M. K. & Eigenheer, R. A. Ser 524 is a phosphorylation site in MUTYH and Ser 524 mutations alter 8-oxoguanine (OG): a mismatch recognition. DNA Repair 9, 1026–1037 (2010).

  35. 35.

    Dorn, J., Ferrari, E., Imhof, R., Ziegler, N. & Hubscher, U. Regulation of human MutYH DNA glycosylase by the E3 ubiquitin ligase mule. J. Biol. Chem. 289, 7049–7058 (2014).

  36. 36.

    Asso, M., Guigliarelli, B., Yagi, T. & Bertrand, P. EPR and redox properties of Desulfovibrio vulgaris Miyazaki hydrogenase: comparison with the Ni–Fe enzyme from Desulfovibrio gigas. Biochim Biophys. Acta 1122, 50–56 (1992).

  37. 37.

    Kowal, A. T. et al. Effect of cysteine to serine mutations on the properties of the [4Fe-4S] center in Escherichia coli fumarate reductase. Biochemistry 34, 12284–12293 (1995).

  38. 38.

    Golinelli, M. P., Chmiel, N. H. & David, S. S. Site-directed mutagenesis of the cysteine ligands to the [4Fe-4S] cluster of Escherichia coli MutY. Biochemistry 38, 6997–7007 (1999).

  39. 39.

    Bai, H. et al. Functional characterization of two human MutY homolog (hMYH) missense mutations (R227W and V232F) that lie within the putative hMSH6 binding domain and are associated with hMYH polyposis. Nucleic Acids Res. 33, 597–604 (2005).

  40. 40.

    Ali, M. et al. Characterization of mutant MUTYH proteins associated with familial colorectal cancer. Gastroenterology 135, 499–507 (2008).

  41. 41.

    Bai, H. et al. Functional characterization of human MutY homolog (hMYH) missense mutation (R231L) that is linked with hMYH-associated polyposis. Cancer Lett. 250, 74–81 (2007).

  42. 42.

    Goto, M. et al. Adenine DNA glycosylase activity of 14 human MutY homolog (MUTYH) variant proteins found in patients with colorectal polyposis and cancer. Human Mutat. 31, E1861–1874 (2010).

  43. 43.

    Fleischmann, C. et al. Comprehensive analysis of the contribution of germline MYH variation to early-onset colorectal cancer. Int. J. Cancer 109, 554–558 (2004).

  44. 44.

    Luncsford, P. J. et al. A structural hinge in eukaryotic MutY homologues mediates catalytic activity and Rad9-Rad1-Hus1 checkpoint complex interactions. J. Mol. Biol. 403, 351–370 (2010).

Download references


The authors thank T. Huston of the W.M. Keck Lab in the Department of Earth & Environmental Sciences at the University of Michigan for ICP-HRMS analyses. This work was funded in part by a Ruth L. Kirschstein National Research Service Award (GM095065 to J.A.C.), a National Institutes of Health (NIH) grant (R35 GM118101) and an H.W. Vahlteich Professorship (to D.H.S.), a Ruth L. Kirschstein National Research Service Award and American Society of Clinical Oncology Young Investigator Award (to K.M.), grant 1R01CA197350 (to S.B.G.), a USC Norris Comprehensive Cancer Center Support Grant (CA014089 to S.B.G.), an award from the Ming Hsieh Institute for Engineering—Medicine for Cancer, and support from Daniel and Maryann Fong and the Anton B. Burg Foundation (to S.B.G.). P.L.B., E.O.B. and J.K.B. acknowledge the NIH (GM126904 to J.K.B.) and Moore Foundation for financial support. E.O.B. acknowledges NIH training grant T32-GM07616 and a Ralph Parsons Fellowship for support.

Author information

Author notes

  1. These authors contributed equally to this work: Kevin J. McDonnell, Joseph A. Chemler, Phillip L. Bartels.


  1. University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA

    • Kevin J. McDonnell
    •  & Stephen B. Gruber
  2. Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA

    • Joseph A. Chemler
    •  & David H. Sherman
  3. Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA

    • Phillip L. Bartels
    • , Elizabeth O’Brien
    •  & Jacqueline K. Barton
  4. Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA

    • Monica L. Marvin
  5. Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA

    • Janice Ortega
    •  & Guo-Min Li
  6. Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA

    • Ralph H. Stern
  7. Amgen Inc., Thousand Oaks, CA, USA

    • Leon Raskin
  8. Departments of Medicinal Chemistry, Chemistry and Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA

    • David H. Sherman


  1. Search for Kevin J. McDonnell in:

  2. Search for Joseph A. Chemler in:

  3. Search for Phillip L. Bartels in:

  4. Search for Elizabeth O’Brien in:

  5. Search for Monica L. Marvin in:

  6. Search for Janice Ortega in:

  7. Search for Ralph H. Stern in:

  8. Search for Leon Raskin in:

  9. Search for Guo-Min Li in:

  10. Search for David H. Sherman in:

  11. Search for Jacqueline K. Barton in:

  12. Search for Stephen B. Gruber in:


K.M., J.C., P.B., E.O., D.S., J.B. and S.G. conceived and designed the experiments. K.M., J.C. and P.B. co-wrote the paper with input from all authors. R.S., L.R., M.M., J.O. and G.L. contributed materials and analysis tools. K.M., J.C. and P.B. performed the experiments.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to David H. Sherman or Jacqueline K. Barton or Stephen B. Gruber.

Supplementary information

  1. Supplementary Information

    Supplementary Methods, Supplementary Figures, Supplementary Tables, and Supplementary References

  2. Reporting Summary

About this article

Publication history