Control over phase separation and nucleation using a laser-tweezing potential

Abstract

Control over the nucleation of new phases is highly desirable but elusive. Even though there is a long history of crystallization engineering by varying physicochemical parameters, controlling which polymorph crystallizes or whether a molecule crystallizes or forms an amorphous precipitate is still a poorly understood practice. Although there are now numerous examples of control using laser-induced nucleation, the absence of physical understanding is preventing progress. Here we show that the proximity of a liquid–liquid critical point or the corresponding binodal line can be used by a laser-tweezing potential to induce concentration gradients. A simple theoretical model shows that the stored electromagnetic energy of the laser beam produces a free-energy potential that forces phase separation or triggers the nucleation of a new phase. Experiments in a liquid mixture using a low-power laser diode confirm the effect. Phase separation and nucleation using a laser-tweezing potential explains the physics behind non-photochemical laser-induced nucleation and suggests new ways of manipulating matter.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Summary of the LIPS and laser-induced nucleation experiments.
Fig. 2: Experimental LIPS through the tweezing effect.
Fig. 3: Laser-induced nucleation triggered via the LIPS effect.

References

  1. 1.

    Bučar, D.-K., Lancaster, R. W. & Bernstein, J. Disappearing polymorphs revisited. Angew. Chem. Int. Ed. 54, 6972–6993 (2015).

    Article  Google Scholar 

  2. 2.

    Garetz, B., Aber, J., Goddard, N., Young, R. & Myerson, A. Nonphotochemical, polarization-dependent, laser-induced nucleation in supersaturated aqueous urea solutions. Phys. Rev. Lett. 77, 3475–3476 (1996).

    CAS  Article  Google Scholar 

  3. 3.

    Garetz, B., Matic, J. & Myerson, A. Polarization switching of crystal structure in the nonphotochemical light-induced nucleation of supersaturated aqueous glycine solutions. Phys. Rev. Lett. 89, 175501 (2002).

    Article  Google Scholar 

  4. 4.

    Ward, M. R., Mchugh, S. & Alexander, A. J. Non-photochemical laser-induced nucleation of supercooled glacial acetic acid. Phys. Chem. Chem. Phys. 14, 90–93 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    Iefuji, N. et al. Laser-induced nucleation in protein crystallization: local increase in protein concentration induced by femtosecond laser irradiation. J. Cryst. Growth 318, 741–744 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    Usman, A., Uwada, T. & Masuhara, H. Optical reorientation and trapping of nematic liquid crystals leading to the formation of micrometer-sized domain. J. Phys. Chem. C. 115, 11906–11913 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Kosa, T. et al. Light-induced liquid crystallinity. Nature 485, 347–349 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    Knott, B. C., Larue, J. L., Wodtke, A. M., Doherty, M. F. & Peters, B. Communication: bubbles, crystals, and laser-induced nucleation. J. Chem. Phys. 134, 171102 (2011).

    Article  Google Scholar 

  9. 9.

    Knott, B. C., Doherty, M. F. & Peters, B. A simulation test of the optical Kerr mechanism for laser-induced nucleation. J. Chem. Phys. 134, 154501 (2011).

    Article  Google Scholar 

  10. 10.

    Liu, Y., Van Den Berg, M. H. & Alexander, A. J. Supersaturation dependence of glycine polymorphism using laser-induced nucleation, sonocrystallization and nucleation by mechanical shock. Phys. Chem. Chem. Phys. 19, 19386–19392 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Yuyama, K.-I., Rungsimanon, T., Sugiyama, T. & Masuhara, H. Selective fabrication of α- and γ-polymorphs of glycine by intense polarized continuous wave laser beams. Cryst. Growth Des. 12, 2427–2434 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    Tenwolde, P. & Frenkel, D. Enhancement of protein crystal nucleation by critical density fluctuations. Science 277, 1975–1978 (1997).

    CAS  Article  Google Scholar 

  13. 13.

    Gebauer, D., Voelkel, A. & Coelfen, H. Stable prenucleation calcium carbonate clusters. Science 322, 1819–1822 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    Gebauer, D., Kellermeier, M., Gale, J. D., Bergström, L. & Cölfen, H. Pre-nucleation clusters as solute precursors in crystallisation. Chem. Soc. Rev. 43, 2348–2371 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Radu, M. & Kremer, K. Enhanced crystal growth in binary Lennard–Jones mixtures. Phys. Rev. Lett. 118, 055702–055706 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Wedekind, J. et al. Optimization of crystal nucleation close to a metastable fluid–fluid phase transition. Sci. Rep. 5, 11260 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Jones, R. A. L. Soft Condensed Matter (Oxford Univ. Press, Oxford, 2002).

    Google Scholar 

  18. 18.

    Bowman, R. W. & Padgett, M. J. Optical trapping and binding. Rep. Prog. Phys. 76, 026401 (2013).

    Article  Google Scholar 

  19. 19.

    Yuyama, K.-I., George, J., Thomas, K. G., Sugiyama, T. & Masuhara, H. Two-dimensional growth rate control of l-phenylalanine crystal by laser trapping in unsaturated aqueous solution. Cryst. Growth Des. 16, 953–960 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Méndez-Castro, P., Troncoso, J., Peleteiro, J. & Romaní, L. Heat capacity singularity of binary liquid mixtures at the liquid–liquid critical point. Phys. Rev. E 88, 042107 (2013).

    Article  Google Scholar 

  21. 21.

    Gao, P., Yao, B., Harder, I., Lindlein, N. & Torcal-Milla, F. J. Phase-shifting Zernike phase contrast microscopy for quantitative phase measurement. Opt. Lett. 36, 4305–4307 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Liu, Y., Ward, M. R. & Alexander, A. J. Polarization independence of laser-induced nucleation in supersaturated aqueous urea solutions. Phys. Chem. Chem. Phys. 19, 3464–3467 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Duffus, C., Camp, P. J. & Alexander, A. J. Spatial control of crystal nucleation in agarose gel. J. Am. Chem. Soc. 131, 11676–11677 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    Gutierrez, J. M. P., Hinkley, T., Taylor, J. W., Yanev, K. & Cronin, L. Evolution of oil droplets in a chemorobotic platform. Nat. Commun. 5, 5571 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    Peterman, E. J. G., Gittes, F. & Schmidt, C. F. Laser-induced heating in optical traps. Biophys. J. 84, 1308–1316 (2003).

    CAS  Article  Google Scholar 

  26. 26.

    Hofkens, J., Hotta, J., Sasaki, K., Masuhara, H. & Iwai, K. Molecular assembling by the radiation pressure of a focused laser beam: poly(-isopropylacrylamide) in aqueous solution. Langmuir 13, 414–419 (1997).

    CAS  Article  Google Scholar 

  27. 27.

    Oana, H. et al. Spontaneous formation of giant unilamellar vesicles from microdroplets of a polyion complex by thermally induced phase separation. Angew. Chem. Int. Ed. 48, 4613–4616 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    Kitamura, N., Yamada, M., Ishizaka, S. & Konno, K. Laser-induced liquid-to-droplet extraction of chlorophenol: photothermal phase separation of aqueous triethylamine solutions. Anal. Chem. 77, 6055–6061 (2005).

    CAS  Article  Google Scholar 

  29. 29.

    Bunkin, N. F., Lobeev, A. V., Lyakhov, G. A. & Svirko, Y. P. Local light-induced phase separation of binary liquid solutions. Quantum Electron. 26, 60–64 (1996).

    Article  Google Scholar 

  30. 30.

    Osborne, M. A., Balasubramanian, S., Furey, W. S. & Klenerman, D. Optically biased diffusion of single molecules studied by confocal fluorescence microscopy. J. Phys. Chem. B 102, 3160–3167 (1998).

    CAS  Article  Google Scholar 

  31. 31.

    Yuyama, K.-I., Sugiyama, T. & Masuhara, H. Laser trapping and crystallization dynamics of l-phenylalanine at solution surface. J. Phys. Chem. Lett. 4, 2436–2440 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    Wallace, A. F. et al. Microscopic evidence for liquid–liquid separation in supersaturated CaCO3 solutions. Science 341, 885–889 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).

    Article  Google Scholar 

  34. 34.

    Masuhara, H., Sugiyama, T., Yuyama, K.-I. & Usman, A. Optical trapping assembling of clusters and nanoparticles in solution by CW and femtosecond lasers. Opt. Rev. 22, 143–148 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    Mosses, J., Syme, C. D. & Wynne, K. Order parameter of the liquid–liquid transition in a molecular liquid. J. Phys. Chem. Lett. 6, 38–43 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Syme, C. D. et al. Frustration of crystallisation by a liquid–crystal phase. Sci. Rep. 7, 42439 (2017).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the Engineering and Physical Sciences Research Council (EPSRC) for support through grants EP/J004790/1, EP/J009733/1 and EP/N007417/1. We gratefully acknowledge discussions in 2010 with C. Bain that planted the seed for this work.

Author information

Affiliations

Authors

Contributions

The experiments and data analysis were conducted by F.W. Theory and simulations were conducted by K.W. Both authors contributed to writing the paper. K.W. conceived the overall project.

Corresponding author

Correspondence to Klaas Wynne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Supplementary Results

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Walton, F., Wynne, K. Control over phase separation and nucleation using a laser-tweezing potential. Nature Chem 10, 506–510 (2018). https://doi.org/10.1038/s41557-018-0009-8

Download citation

Further reading