Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Low-temperature formation of pyridine and (iso)quinoline via neutral–neutral reactions

Abstract

Aromatic molecules represent fundamental building blocks in prebiotic chemistry and are contemplated as vital precursors to DNA and RNA nitrogen bases. However, despite the identification of some 300 molecules in extraterrestrial environments, the pathways to pyridine (C5H5N), pyridinyl (C5H4N·) and (iso)quinoline (C9H7N)—the simplest representative mono- and bicyclic aromatic molecules carrying nitrogen—are elusive. Here we afford compelling evidence on the gas-phase formation of methylene amidogen (H2CN·) and cyanomethyl (H2CCN·) radicals via molecular beam studies and electronic structure calculations. The modelling of the chemistries of the Taurus molecular cloud (TMC-1) and Titan’s atmosphere contemplates a complex chain of reactions synthesizing pyridine, pyridinyl and (iso)quinoline from H2CN· and H2CCN· at levels of up to 75%. This study affords unique entry points to precursors of DNA and RNA nitrogen bases in hydrocarbon-rich extraterrestrial environments thus changing the way we think about the origin of prebiotic molecules in our Galaxy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathways to pyridine and (iso)quinoline.
Fig. 2: Laboratory data of the C–ND3 and C2–NH3 reactions.
Fig. 3: CM functions of the C–ND3 and C2–NH3 reactions.
Fig. 4: PESs of the reactions of C–ND3.
Fig. 5: Results of the astrochemical model for Titan’s atmosphere.
Fig. 6: Results of the astrochemical model for TMC-1.

Similar content being viewed by others

Data availability

All data generated in this study are available in the main text and Supplementary Information.

References

  1. Pizzarello, S., Huang, Y. & Fuller, M. The carbon isotopic distribution of Murchison amino acids. Geochim. Cosmochim. Acta 68, 4963–4969 (2004).

    Article  ADS  Google Scholar 

  2. Smith, K. E., Callahan, M. P., Gerakines, P. A., Dworkin, J. P. & House, C. H. Investigation of pyridine carboxylic acids in CM2 carbonaceous chondrites: potential precursor molecules for ancient coenzymes. Geochim. Cosmochim. Acta 136, 1–12 (2014).

    Article  ADS  Google Scholar 

  3. Martins, Z. et al. Extraterrestrial nucleobases in the Murchison meteorite. Earth Planet. Sci. Lett. 270, 130–136 (2008).

    Article  ADS  Google Scholar 

  4. Burton, A. S., Stern, J. C., Elsila, J. E., Glavin, D. P. & Dworkin, J. P. Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chem. Soc. Rev. 41, 5459–5472 (2012).

    Article  Google Scholar 

  5. Andrews, H., Candian, A. & Tielens, A. G. G. M. Hydrogenation and dehydrogenation of interstellar PAHs: spectral characteristics and H2 formation. Astron. Astrophys. 595, A23 (2016).

    Article  ADS  Google Scholar 

  6. Tsuge, M., Bahou, M., Wu, Y.-J., Allamandola, L. & Lee, Y.-P. The infrared spectrum of protonated ovalene in solid para-hydrogen and its possible contribution to interstellar unidentified infrared emission. Astrophys. J. 825, 96 (2016).

    Article  ADS  Google Scholar 

  7. Tielens, A. G. G. M. Interstellar polycyclic aromatic hydrocarbon molecules. Annu. Rev. Astron. Astrophys. 46, 289–337 (2008).

    Article  ADS  Google Scholar 

  8. Knorke, H., Langer, J., Oomens, J. & Dopfer, O. Infrared spectra of isolated protonated polycyclic aromatic hydrocarbon molecules. Astrophys. J. 706, L66 (2009).

    Article  ADS  Google Scholar 

  9. Hudgins, D. M., Bauschlicher, C. W. Jr & Allamandola, L. J. Variations in the peak position of the 6.2 μm interstellar emission feature: a tracer of N in the interstellar polycyclic aromatic hydrocarbon population. Astrophys. J. 632, 316 (2005).

    Article  ADS  Google Scholar 

  10. Herbst, E. & Van Dishoeck, E. F. Complex organic interstellar molecules. Annu. Rev. Astron. Astrophys. 47, 427–480 (2009).

    Article  ADS  Google Scholar 

  11. Kaiser, R. I. & Hansen, N. An aromatic universe—a physical chemistry perspective. J. Phys. Chem. A 125, 3826–3840 (2021).

    Article  Google Scholar 

  12. Peeters, Z., Botta, O., Charnley, S. B., Ruiterkamp, R. & Ehrenfreund, P. The astrobiology of nucleobases. Astrophys. J. 593, L129 (2003).

    Article  ADS  Google Scholar 

  13. Hörst, S. M. Titan’s atmosphere and climate. J. Geophys. Res. 122, 432–482 (2017).

    Article  Google Scholar 

  14. Vuitton, V., Yelle, R. V., Klippenstein, S. J., Hörst, S. M. & Lavvas, P. Simulating the density of organic species in the atmosphere of Titan with a coupled ion–neutral photochemical model. Icarus 324, 120–197 (2019).

    Article  ADS  Google Scholar 

  15. Loison, J. C. et al. The neutral photochemistry of nitriles, amines and imines in the atmosphere of Titan. Icarus 247, 218–247 (2015).

    Article  ADS  Google Scholar 

  16. Kislov, V. V., Nguyen, T. L., Mebel, A. M., Lin, S. H. & Smith, S. C. Photodissociation of benzene under collision-free conditions: an ab initio/Rice–Ramsperger–Kassel–Marcus study. J. Chem. Phys. 120, 7008–7017 (2004).

    Article  ADS  Google Scholar 

  17. Lin, M.-F. et al. Photodissociation dynamics of pyridine. J. Chem. Phys. 123, 054309 (2005).

    Article  ADS  Google Scholar 

  18. Vuitton, V., Yelle, R. V. & McEwan, M. J. Ion chemistry and N-containing molecules in Titan’s upper atmosphere. Icarus 191, 722–742 (2007).

    Article  ADS  Google Scholar 

  19. Ricca, A., Bauschlicher, C. W. Jr & Bakes, E. A computational study of the mechanisms for the incorporation of a nitrogen atom into polycyclic aromatic hydrocarbons in the Titan haze. Icarus 154, 516–521 (2001).

    Article  ADS  Google Scholar 

  20. Soorkia, S. et al. Direct detection of pyridine formation by the reaction of CH (CD) with pyrrole: a ring expansion reaction. Phys. Chem. Chem. Phys. 12, 8750–8758 (2010).

    Article  Google Scholar 

  21. López-Puertas, M. et al. Large abundances of polycyclic aromatic hydrocarbons in Titan’s upper atmosphere. Astrophys. J. 770, 132 (2013).

    Article  ADS  Google Scholar 

  22. Anderson, C. M. & Samuelson, R. E. Titan’s aerosol and stratospheric ice opacities between 18 and 500 μm: vertical and spectral characteristics from Cassini CIRS. Icarus 212, 762–778 (2011).

    Article  ADS  Google Scholar 

  23. Sebree, J. A., Trainer, M. G., Loeffler, M. J. & Anderson, C. M. Titan aerosol analog absorption features produced from aromatics in the far infrared. Icarus 236, 146–152 (2014).

    Article  ADS  Google Scholar 

  24. Ali, A., Sittler, E. C. Jr, Chornay, D., Rowe, B. R. & Puzzarini, C. Organic chemistry in Titan׳ s upper atmosphere and its astrobiological consequences: I. Views towards Cassini Plasma Spectrometer (CAPS) and Ion Neutral Mass Spectrometer (INMS) experiments in space. Planet. Space Sci. 109, 46–63 (2015).

    Article  ADS  Google Scholar 

  25. Mathé, C., Gautier, T., Trainer, M. G. & Carrasco, N. Detection opportunity for aromatic signature in Titan’s aerosols in the 4.1–5.3 μm range. Astrophys. J. Lett. 861, L25 (2018).

    Article  ADS  Google Scholar 

  26. Zhao, L. et al. Gas-phase synthesis of corannulene—a molecular building block of fullerenes. Phys. Chem. Chem. Phys. 23, 5740–5749 (2021).

    Article  Google Scholar 

  27. Kaiser, R. I. et al. Gas-phase synthesis of racemic helicenes and their potential role in the enantiomeric enrichment of sugars and amino acids in meteorites. Phys. Chem. Chem. Phys. 24, 25077–25087 (2022).

    Article  Google Scholar 

  28. Parker, D. S. N. & Kaiser, R. I. On the formation of nitrogen-substituted polycyclic aromatic hydrocarbons (NPAHs) in circumstellar and interstellar environments. Chem. Soc. Rev. 46, 452–463 (2017).

    Article  Google Scholar 

  29. Zhao, L. et al. A molecular beam and computational study on the barrierless gas phase formation of (iso)quinoline in low temperature extraterrestrial environments. Phys. Chem. Chem. Phys. 23, 18495–18505 (2021).

    Article  Google Scholar 

  30. Broadfoot, A. L. et al. Ultraviolet spectrometer observations of Neptune and Triton. Science 246, 1459–1466 (1989).

    Article  ADS  Google Scholar 

  31. Moores, J. E., Smith, C. L., Toigo, A. D. & Guzewich, S. D. Penitentes as the origin of the bladed terrain of Tartarus Dorsa on Pluto. Nature 541, 188–190 (2017).

    Article  ADS  Google Scholar 

  32. Yang, Z. et al. Gas-phase formation of 1, 3, 5, 7-cyclooctatetraene (C8H8) through ring expansion via the aromatic 1, 3, 5-cyclooctatrien-7-yl radical (C8H9) transient. J. Am. Chem. Soc. 144, 22470–22478 (2022).

    Article  Google Scholar 

  33. Yang, Z. et al. Gas-phase formation of the resonantly stabilized 1-indenyl (C9H7) radical in the interstellar medium. Sci. Adv. 9, eadi5060 (2023).

    Article  Google Scholar 

  34. Zhang, J. & Valeev, E. F. Prediction of reaction barriers and thermochemical properties with explicitly correlated coupled-cluster methods: a basis set assessment. J. Chem. Theory Comput. 8, 3175–3186 (2012).

    Article  Google Scholar 

  35. Adler, T. B., Knizia, G. & Werner, H.-J. A simple and efficient CCSD(T)-F12 approximation. J. Chem. Phys. 127, 221106 (2007).

    Article  ADS  Google Scholar 

  36. Bourgalais, J. et al. The C(3P) + NH3 reaction in interstellar chemistry. I. Investigation of the product formation channels. Astrophys. J. 812, 106 (2015).

    Article  ADS  Google Scholar 

  37. Chiba, S., Honda, T., Kondo, M. & Takayanagi, T. Direct dynamics study of the N(4S)+ CH3(2A2″) reaction. Comput. Theor. Chem. 1061, 46–51 (2015).

    Article  Google Scholar 

  38. Mebel, A. M., Georgievskii, Y., Jasper, A. W. & Klippenstein, S. J. Pressure-dependent rate constants for PAH growth: formation of indene and its conversion to naphthalene. Faraday Discuss. 195, 637–670 (2016).

    Article  ADS  Google Scholar 

  39. Jasper, A. W. & Hansen, N. Hydrogen-assisted isomerizations of fulvene to benzene and of larger cyclic aromatic hydrocarbons. Proc. Combust. Inst. 34, 279–287 (2013).

    Article  Google Scholar 

  40. Lau, K.-C., Li, W.-K., Ng, C. Y. & Chiu, S.-W. A Gaussian-2 study of isomeric C2H2N and C2H2N+. J. Phys. Chem. A 103, 3330–3335 (1999).

    Article  Google Scholar 

  41. Willacy, K., Allen, M. & Yung, Y. A new astrobiological model of the atmosphere of Titan. Astrophys. J. 829, 79 (2016).

    Article  ADS  Google Scholar 

  42. Cui, J. et al. Analysis of Titan’s neutral upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements. Icarus 200, 581–615 (2009).

    Article  ADS  Google Scholar 

  43. Hickson, K. M. et al. The C(3P) + NH3 reaction in interstellar chemistry. II. Low temperature rate constants and modeling of NH, NH2, and NH3 abundances in dense interstellar clouds. Astrophys. J. 812, 107 (2015).

    Article  ADS  Google Scholar 

  44. Pope, C. J. & Miller, J. A. Exploring old and new benzene formation pathways in low-pressure premixed flames of aliphatic fuels. Proc. Combust. Inst. 28, 1519–1527 (2000).

    Article  Google Scholar 

  45. Zhao, L. et al. Gas-phase synthesis of benzene via the propargyl radical self-reaction. Sci. Adv. 7, eabf0360 (2021).

    Article  ADS  Google Scholar 

  46. Pearce, B. K. D., Ayers, P. W. & Pudritz, R. E. A consistent reduced network for HCN chemistry in early earth and Titan atmospheres: quantum calculations of reaction rate coefficients. J. Phys. Chem. A 123, 1861–1873 (2019).

    Article  Google Scholar 

  47. Pearce, B. K. D., He, C. & Hörst, S. M. An experimental and theoretical investigation of HCN production in the Hadean Earth atmosphere. ACS Earth Space Chem. 6, 2385–2399 (2022).

    Article  ADS  Google Scholar 

  48. Marston, G., Nesbitt, F. L., Nava, D. F., Payne, W. A. & Stief, L. J. Temperature dependence of the reaction of nitrogen atoms with methyl radicals. J. Phys. Chem. 93, 5769–5774 (1989).

    Article  Google Scholar 

  49. Marston, G., Nesbitt, F. L. & Stief, L. J. Branching ratios in the N + CH3 reaction: formation of the methylene amidogen (H2CN) radical. J. Chem. Phys. 91, 3483–3491 (1989).

    Article  ADS  Google Scholar 

  50. Dobrijevic, M., Loison, J. C., Hickson, K. M. & Gronoff, G. 1D-coupled photochemical model of neutrals, cations and anions in the atmosphere of Titan. Icarus 268, 313–339 (2016).

    Article  ADS  Google Scholar 

  51. Loison, J. C., Dobrijevic, M. & Hickson, K. M. The photochemical production of aromatics in the atmosphere of Titan. Icarus 329, 55–71 (2019).

    Article  ADS  Google Scholar 

  52. Benne, B., Dobrijevic, M., Cavalié, T., Loison, J.-C. & Hickson, K. M. A photochemical model of Triton’s atmosphere with an uncertainty propagation study. Astron. Astrophys. 667, A169 (2022).

    Article  Google Scholar 

  53. Vanuzzo, G. et al. Reaction N(2D) + CH2CCH2 (allene): an experimental and theoretical investigation and implications for the photochemical models of Titan. ACS Earth Space Chem. 6, 2305–2321 (2022).

    Article  ADS  Google Scholar 

  54. Teolis, B. D. et al. A revised sensitivity model for Cassini INMS: Results at Titan. Space Sci. Rev. 190, 47–84 (2015).

    Article  ADS  Google Scholar 

  55. Gladstone, G. R. & Young, L. A. New Horizons observations of the atmosphere of Pluto. Annu. Rev. Earth Planet. Sci. 47, 119–140 (2019).

    Article  ADS  Google Scholar 

  56. Rap, D. B., Schrauwen, J. G., Marimuthu, A. N., Redlich, B. & Brünken, S. Low-temperature nitrogen-bearing polycyclic aromatic hydrocarbon formation routes validated by infrared spectroscopy. Nat. Astron. 6, 1059–1067 (2022).

    Article  ADS  Google Scholar 

  57. McGuire, B. A. et al. Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering. Science 371, 1265–1269 (2021).

    Article  ADS  Google Scholar 

  58. McElroy, D. et al. The UMIST database for astrochemistry 2012. Astron. Astrophys. 550, A36 (2013).

    Article  Google Scholar 

  59. Ohishi, M., McGonagle, D., Irvine, W. M., Yamamoto, S. & Saito, S. Detection of a new interstellar molecule, H2CN. Astrophys. J. 427, L51–L54 (1994).

    Article  ADS  Google Scholar 

  60. Thaddeus, P., Vrtilek, J. M. & Gottlieb, C. A. Laboratory and astronomical identification of cyclopropenylidene, C3H2. Astrophys. J. 299, L63–L66 (1985).

    Article  ADS  Google Scholar 

  61. Cernicharo, J. et al. Discovery of CH2CHCCH and detection of HCCN, HC4N, CH3CH2CN, and, tentatively, CH3CH2CCH in TMC-1. Astron. Astrophys. 647, L2 (2021).

    Article  ADS  Google Scholar 

  62. Tennis, J. D. et al. Detection and modelling of CH3NC in TMC-1. Mon. Not. R. Astron. Soc. 525, 2154–2171 (2023).

    Article  ADS  Google Scholar 

  63. Stoks, P. G. & Schwartz, A. W. Basic nitrogen-heterocyclic compounds in the Murchison meteorite. Geochim. Cosmochim. Acta 46, 309–315 (1982).

    Article  ADS  Google Scholar 

  64. Sephton, M. A. Organic compounds in carbonaceous meteorites. Nat. Prod. Rep. 19, 292–311 (2002).

    Article  Google Scholar 

  65. Dangi, B. B., Maity, S., Kaiser, R. I. & Mebel, A. M. A combined crossed beam and ab initio investigation of the gas phase reaction of dicarbon molecules (C2; X1Σg+/a3Πu) with propene (C3H6; X1A′): identification of the resonantly stabilized free radicals 1-and 3-vinylpropargyl. J. Phys. Chem. A 117, 11783–11793 (2013).

    Article  Google Scholar 

  66. Werner, H. et al. MOLPRO, version 2015.1, a package of ab initio programs (Univ. Cardiff Chemistry Consultants (UC3), 2015).

  67. Knowles, P. J., Hampel, C. & Werner, H. J. Coupled cluster theory for high spin, open shell reference wave functions. J. Chem. Phys. 99, 5219–5227 (1993).

    Article  ADS  Google Scholar 

  68. Dunning, T. H. Jr Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).

    Article  ADS  Google Scholar 

  69. Peterson, K. A., Adler, T. B. & Werner, H.-J. Systematically convergent basis sets for explicitly correlated wavefunctions: the atoms H, He, B–Ne, and Al–Ar. J. Chem. Phys. 128, 084102 (2008).

    Article  ADS  Google Scholar 

  70. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  ADS  Google Scholar 

  71. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  72. Frisch, M. J. et al. Gaussian 16, revision C.1 (Gaussian Inc., Wallingford CT, 2016).

Download references

Acknowledgements

This work was supported by the US Department of Energy, Basic Energy Sciences, by grant no. DE-FG02-03ER15411 to the University of Hawaii at Manoa. The support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grant nos. 311508/2021-9 and 405524/2021-8, is also acknowledged. We acknowledge fruitful discussions on the fractional abundances of ammonia with C. A. Nixon (NASA Goddard) and K. Willacy (JPL).

Author information

Authors and Affiliations

Authors

Contributions

R.I.K. designed the experiments. Z.Y., C.H. and S.J.G. preformed the experiments. A.M.M., P.F.G.V., M.O.A. and B.R.L.G. conducted the electronic structure calculations. J.-C.L, K.M.H. and M.D. conducted the atmospheric modelling of Titan. X.L. performed the astrochemical modelling of TMC-1. Z.Y. and R.I.K. analysed the data and wrote the paper. All authors discussed the data.

Corresponding authors

Correspondence to Alexander M. Mebel, Breno R. L. Galvão, Jean-Christophe Loison, Xiaohu Li or Ralf I. Kaiser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Ben Pearce and Gianmarco Vanuzzo for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Temperature and energy dependence of the thermal rate constants.

Temperature and energy dependence of the thermal rate constant k(T) and k(E) for the p3 + H in the C + NH3 reaction. TST methods are utilized in the calculation.

Extended Data Fig. 2 Potential energy surfaces of the reaction of dicarbon -ammonia.

Singlet and triplet surfaces of the C2-NH3 system involving different routes to the final products.

Extended Data Fig. 3 Formation pathways to pyridinyl radicals and the pyridine intermediate I.

Distinct pyridinyl radicals and pyridine can be formed from reactions of methylene amidogen (H2CN) with i/n-C4H3 isomers and the cyanomethyl (H2CCN) with propargyl (C3H3).

Extended Data Fig. 4 Formation pathways to pyridinyl radicals and the pyridine intermediate II.

Distinct pyridinyl radicals and pyridine can be formed from reactions of cis-iminomethyl (HCNH) with i/n-C4H3 isomers.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Figs. 1–3 and Tables 1–4.

Supplementary Data 1

Optimized Cartesian coordinates (Å) and vibrational frequencies (cm−1) for the intermediates, transition states, reactants and products involved in the reactions of C–NH3 and C2–NH3, and the pathways from H2CN·, cis-HCNH and H2CCN· to pyridine and pyridinyl radicals.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., He, C., Goettl, S.J. et al. Low-temperature formation of pyridine and (iso)quinoline via neutral–neutral reactions. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02267-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-024-02267-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing