Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A departure from the mass–metallicity relation in merging galaxies due to an infall of metal-poor gas

Abstract

Heavy element accumulation and stellar mass assembly are fundamental processes in the formation and evolution of galaxies. However, the key elements that govern them, such as gas accretion and outflow, are not fully understood. This is especially true for luminous and massive galaxies, which usually suffer strong feedback as massive outflows and large-scale gas accretion triggered by galaxy interactions. Using a sample of 77 luminous infrared (IR) galaxies, we derive chemical abundances using new diagnostics based on nebular IR lines, which peer through their dusty medium and allow us to include the obscured metals. In contrast to optically based studies, our analysis reveals that most luminous IR galaxies remain close to the mass–metallicity relation. Four galaxies with extreme star formation rates (>60 M yr−1) in their late-merger stages show strongly depressed metallicities (12 + log(O/H) ≈ 7.7–8.1) along with solar-like N/O ratios, indicative of gas mixing processes and suggesting the action of massive infall of metal-poor gas in a short phase, eventually followed by rapid enrichment. These results challenge the classical gas equilibrium scenario applied to main-sequence galaxies, suggesting that chemical enrichment and stellar-mass growth in luminous IR galaxies likely occur via mergers, driving these galaxies out of chemical equilibrium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scaling relations for log(N/O).
Fig. 2: Mass–metallicity relation for our sample of SFGs.
Fig. 3: Relations between SFR, stellar mass and metallicity.

Similar content being viewed by others

Data availability

Data supporting this study will be publicly available at the Centre de Données astronomiques de Strasbourg (CDS) via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/.

Code availability

All versions of the HII-CHI-Mistry code are publicly available at: http://www.iaa.csic.es/~epm/HII-CHI-mistry.html.

References

  1. Maiolino, R. & Mannucci, F. De re metallica: the cosmic chemical evolution of galaxies. Astron. Astrophys. Rev. 27, 3 (2019).

    ADS  Google Scholar 

  2. Nomoto, K., Kobayashi, C. & Tominaga, N. Nucleosynthesis in stars and the chemical enrichment of galaxies. Annu. Rev. Astron. Astrophys. 51, 457–509 (2013).

    ADS  CAS  Google Scholar 

  3. Tremonti, C. A. et al. The origin of the mass-metallicity relation: insights from 53,000 star-forming galaxies in the Sloan digital sky survey. Astrophys. J. 613, 898–913 (2004).

    ADS  CAS  Google Scholar 

  4. Andrews, B. H. & Martini, P. The mass-metallicity relation with the direct method on stacked spectra of SDSS galaxies. Astrophys. J. 765, A140 (2013).

    ADS  Google Scholar 

  5. Curti, M., Mannucci, F., Cresci, G. & Maiolino, R. The mass-metallicity and the fundamental metallicity relation on a fully Te-based abundance scale for galaxies. Mon. Not. R. Astron. Soc. 491, 944–964 (2020).

    ADS  CAS  Google Scholar 

  6. Baker, W. M. et al. The metallicity’s fundamental dependence on both local and global galactic quantities. Mon. Not. R. Astron. Soc. 519, 1149–1170 (2023).

    ADS  CAS  Google Scholar 

  7. Peng, Y. & Maiolino, R. The dependence of the galaxy mass-metallicity relation on environment and the implied metallcity of the IGM. Mon. Not. R. Astron. Soc. 438, 262–270 (2014).

    ADS  Google Scholar 

  8. Somerville, R. S. & Davé, R. Physical models of galaxy formation in a cosmological framework. Annu. Rev. Astron. Astrophys. 53, 51–113 (2015).

    ADS  CAS  Google Scholar 

  9. Blanc, G. A., Lu, Y., Benson, A., Katsianis, A. & Barraza, M. A characteristic mass scale in the mass-metallicity telation of galaxies. Astrophys. J. 877, A6 (2019).

    ADS  Google Scholar 

  10. Thomas, A. D. et al. The mass-metallicity relation of local active galaxies. Astrophys. J. 874, A100 (2019).

    ADS  Google Scholar 

  11. Duarte-Puertas, S. et al. Mass-metallicity and star formation rate in galaxies: a complex relation tuned to stellar age. Astron. Astrophys. 666, A186 (2022).

    Google Scholar 

  12. Förster Schreiber, N. M. & Wuyts, S. Star-forming galaxies at cosmic noon. Annu. Rev. Astron. Astrophys. 58, 661–725 (2020).

    ADS  Google Scholar 

  13. Armus, L. et al. GOALS: the Great Observatories All-sky LIRG Survey. Publ. Astron. Soc. Pac. 121, 559 (2009).

    ADS  Google Scholar 

  14. Stierwalt, S. et al. Mid-infrared properties of nearby luminous infrared galaxies. I. Spitzer infrared spectrograph spectra for the GOALS sample. Astrophys. J. Suppl. Ser. 206, A1 (2013).

    ADS  Google Scholar 

  15. Evans, A. S. et al. Molecular gas and nuclear activity in radio galaxies detected by IRAS. Astrophys. J. Suppl. Ser. 159, 197–213 (2005).

    ADS  CAS  Google Scholar 

  16. Magnelli, B. et al. The 0.4 < z < 1.3 star formation history of the Universe as viewed in the far-infrared. Astron. Astrophys. 496, 57–75 (2009).

    ADS  Google Scholar 

  17. Rupke, D. S. N., Veilleux, S. & Baker, A. J. The oxygen abundances of luminous and ultraluminous infrared galaxies. Astrophys. J. 674, 172–193 (2008).

    ADS  CAS  Google Scholar 

  18. Grønnow, A. E., Finlator, K. & Christensen, L. Merging galaxies produce outliers from the fundamental metallicity relation. Mon. Not. R. Astron. Soc. 451, 40054017 (2015).

    Google Scholar 

  19. Lo Faro, B. et al. Characterizing the UV-to-NIR shape of the dust attenuation curve of IR luminous galaxies up to z ~ 2. Mon. Not. R. Astron. Soc. 472, 1372 (2017).

    ADS  Google Scholar 

  20. Pereira-Santaella, M., Rigopoulou, D., Farrah, D., Lebouteiller, V. & Li, J. Far-infrared metallicity diagnostics: application to local ultraluminous infrared galaxies. Mon. Not. R. Astron. Soc. 470, 1218–1232 (2017).

    ADS  CAS  Google Scholar 

  21. Chartab, N. et al. Low gas-phase metallicities of ultraluminous infrared galaxies are a result of dust obscuration. Nat. Astron. 6, 844–849 (2022).

    ADS  Google Scholar 

  22. Fernández-Ontiveros, J. A., Pérez-Montero, E., Vílchez, J. M., Amorín, R. & Spinoglio, L. Measuring chemical abundances with infrared nebular lines: HII-CHI-MISTRY-IR. Astron. Astrophys. 652, A23 (2021).

    ADS  Google Scholar 

  23. Pérez-Montero, E. & Contini, T. The impact of the nitrogen-to-oxygen ratio on ionized nebula diagnostics based on [NII] emission lines. Mon. Not. R. Astron. Soc. 398, 949–960 (2009).

    ADS  Google Scholar 

  24. Herrero-Illana, R. et al. Molecular gas and dust properties of galaxies from the Great Observatories All-sky LIRG Survey. Astron. Astrophys. 628, A71 (2019).

    CAS  Google Scholar 

  25. Calura, F., Pipino, A. & Matteucci, F. The cycle of interstellar dust in galaxies of different morphological types. Astron. Astrophys. 479, 669–685 (2008).

    ADS  CAS  Google Scholar 

  26. Montuori, M. et al. The dilution peak, metallicity evolution, and dating of galaxy interactions and mergers. Astron. Astrophys. 518, A56 (2010).

    Google Scholar 

  27. Rupke, D. S., Kewley, L. J. & Barnes, J. E. Galaxy mergers and the mass–metallicity relation: evidence for nuclear metal dilution and flattened gradients from numerical simulations. Astrophys. J. Lett. 710, L156–L160 (2010).

  28. Sparre, M. et al. Gas flows in galaxy mergers: supersonic turbulence in bridges, accretion from the circumgalactic medium, and metallicity dilution. Mon. Not. R. Astron. Soc. 509, 2720–2735 (2022).

    ADS  CAS  Google Scholar 

  29. Bustamente, S., Sparre, M., Springel, V. & Grand, R. J. J. Merger-induced metallicity dilution in cosmological galaxy formation simulations. Mon. Not. R. Astron. Soc. 479, 3381–3392 (2018).

    ADS  Google Scholar 

  30. Teyssier, R., Chapon, D. & Bournaud, F. The driving mechanism of starbursts in galaxy mergers. Astrophys. J. Lett. 720, L149–L154 (2010).

    ADS  Google Scholar 

  31. Pérez-Díaz, B., Pérez-Montero, E., Fernández-Ontiveros, J. A. & Vílchez, J. M. Measuring chemical abundances in AGN from infrared nebular lines: HII-CHI-Mistry-IR for AGN. Astron. Astrophys. 666, A115 (2022).

    ADS  Google Scholar 

  32. Houck, J. R. et al. The infrared spectrograph (IRS) on the Spitzer Space Telescope. Astrophys. J. Suppl. Ser. 154, 18–24 (2004).

    ADS  Google Scholar 

  33. Monreal-Ibero, A., Arribas, S. & Colina, L. LINER-like extended nebulae in ULIRGs: shocks generated by merger-induced flows. Astrophys. J. 637, 138–146 (2006).

    ADS  CAS  Google Scholar 

  34. Rich, J. A., Kewley, L. J. & Dopita, M. A. Galaxy mergers drive Shocks: an integral field study of GOALS galaxies. Astrophys. J. Suppl. Ser. 221, 28 (2015).

    ADS  Google Scholar 

  35. Blanc, G. A., Heiderman, A., Gebhardt, K., Evans, N. J. I. I. & Adams, J. The spatially resolved star formation law from integral field spectroscopy: VIRUS-P observations of NGC 5194. Astrophys. J. 704, 842–862 (2009).

    ADS  CAS  Google Scholar 

  36. Östlin, G. et al. Kinematics of Haro 11: the miniature antennae. Astron. Astrophys. 583, A55 (2015).

    Google Scholar 

  37. Östlin, G. et al. The source of leaking ionizing photons from Haro11: clues from HST/COS spectroscopy of knots A, B and C. Astrophys. J. 912, 155 (2021).

    ADS  Google Scholar 

  38. Herrera-Camus, R. et al. SHINING, a survey of far-infrared lines in nearby galaxies. II. Line-deficit models, AGN Impact, [CII]-SFR scaling relations, and Mass-Metallicity Relation in (U)LIRGs. Astrophys. J. 861, 95 (2018).

    ADS  Google Scholar 

  39. Amorín, R. O., Pérez-Montero, E. & Vílchez, J. M. On the oxygen and nitrogen chemical abundances and the evolution of the “green pea” galaxies. Astrophys. J. Lett. 715, L128–L130 (2010).

    ADS  Google Scholar 

  40. Joseph, R. D. & Wright, G. S. Recent star formation in interacting galaxies - II. Super starbursts in merging galaxies. Mon. Not. R. Astron. Soc. 214, 87–95 (1985).

    ADS  CAS  Google Scholar 

  41. Howell, J. H. et al. The Great Observatories All-sky LIRG Survey: comparison of ultraviolet and far-infrared properties. Astrophys. J. 715, 572–588 (2010).

    ADS  Google Scholar 

  42. Kennicutt, R. C. & Evans, N. J. Star formation in the Milky Way and nearby galaxies. Annu. Rev. Astron. Astrophys. 50, 531–608 (2012).

    ADS  CAS  Google Scholar 

  43. Vincenzo, F. & Kobayashi, C. Evolution of N/O ratios in galaxies from cosmological hydrodynamical simulations. Mon. Not. R. Astron. Soc. 478, 155–166 (2018).

    ADS  CAS  Google Scholar 

  44. Köppen, J. & Edmunds, M. G. Gas flows and the chemical evolution of galaxies - III. Graphical analysis and secondary elements. Mon. Not. R. Astron. Soc. 306, 317–326 (1999).

    ADS  Google Scholar 

  45. Arribas, S., Colina, L., Bellocchi, E., Maiolino, R. & Villar-Martín, M. Ionized gas outflows and global kinematics of low-z luminous star-forming galaxies. Astron. Astrophys. 568, A14 (2014).

    ADS  Google Scholar 

  46. Cazzoli, S., Arribas, S., Maiolino, R. & Colina, S. Neutral gas outflows in nearby [U]LIRGs via optical NaD feature. Astron. Astrophys. 590, A125 (2016).

    ADS  Google Scholar 

  47. Pereira-Santaella, M. et al. Spatially resolved cold molecular outflows in ULIRGs. Astron. Astrophys. 616, A171 (2018).

    Google Scholar 

  48. Sanders, R. L. et al. The MOSDEF survey: the evolution of the mass-metallicity relation from z = 0 to z 3.3. Astrophys. J. 914, 19 (2021).

    ADS  CAS  Google Scholar 

  49. Rich, J. A., Torrey, P., Kewley, L. J., Dopita, M. A. & Rupke, D. S. N. An integral field study of abundance gradients in nearby luminous infrared galaxies. Astrophys. J. 753, 5 (2012).

    ADS  Google Scholar 

  50. Sharda, P. et al. The physics of gas phase metallicity gradient in galaxies. Mon. Not. R. Astron. Soc. 502, 5935–5961 (2021).

    ADS  CAS  Google Scholar 

  51. Lodders, K. Relative atomic solar system abundances, mass fractions, and atomic masses of the elements and their isotopes, composition of the solar photosphere, and compositions of the major chondritic meteorite groups. Space Sci. Rev. 217, 44 (2021).

    ADS  CAS  Google Scholar 

  52. Hernán-Caballero, A. et al. The infrared database of extragalactic observables from Spitzer - I. The redshift catalogue. Mon. Not. R. Astron. Soc. 455, 1796–1806 (2016).

    ADS  Google Scholar 

  53. Spoon, H. W. W. et al. The infrared database of extragalactic observables from Spitzer - II. The database and diagnostic power of crystalline silicate features in Galaxy spectra. Astrophys. J. Suppl. Ser. 259, 37 (2022).

    ADS  Google Scholar 

  54. Inami, H. et al. The AKARI 2.5-5 micron spectra of luminous infrared galaxies in the local Universe. Astron. Astrophys. 617, A130 (2018).

    Google Scholar 

  55. Poglitsch, A. et al. The photodetector array camera and spectrometer (PACS) on the Herschel Space Observatory. Astron. Astrophys. 518, L2 (2010).

    ADS  Google Scholar 

  56. Fernández-Ontiveros, J. A. et al. Far-infrared line spectra of active galaxies from the Herschel/PACS spectrometer: the complete database. Astrophys. J. Suppl. Ser. 226, 19 (2016).

    ADS  Google Scholar 

  57. Peng, J. A. et al. Far-infrared line diagnostics: improving N/O abundance estimates for dusty galaxies. Astrophys. J. 908, 166 (2021).

    ADS  CAS  Google Scholar 

  58. Fischer, C. et al. FIFI-LS: the field-imaging far-infrared line spectrometer on SOFIA. J. Astronom. Instrum. 7, 1840003–556 (2018).

    ADS  Google Scholar 

  59. Lebouteiller, V. et al. CASSIS: the Cornell Atlas of Spitzer/infrared spectrograph sources. II. High-resolution observations. Astrophys. J. Suppl. Ser. 218, 21 (2015).

    ADS  Google Scholar 

  60. Imanishi, M. et al. AKARI IRC infrared 2-5-5 μm spectroscopy of a large sample of luminous infrared galaxies. Astrophys. J. 721, 1233–1261 (2010).

    ADS  CAS  Google Scholar 

  61. Armus, L. et al. Observations of ultraluminous infrared galaxies with the infrared spectrograph on the Spitzer Space Telescope. II. The IRAS bright galaxy sample. Astrophys. J. 656, 148–167 (2007).

    ADS  CAS  Google Scholar 

  62. Pérez-Díaz, B., Masegosa, P., Márquez, I. & Pérez-Montero, E. Chemical abundances in the nuclear region of nearby galaxies from the Palomar Survey. Mon. Not. R. Astron. Soc. 505, 4289–4309 (2021).

    ADS  Google Scholar 

  63. Puget, J. L. & Leger, A. A new component of the interstellar matter: small grains and large aromatic molecules. Annu. Rev. Astron. Astrophys. 27, 161–198 (1989).

    ADS  CAS  Google Scholar 

  64. Hernán-Caballero, A. et al. Extinction in the 11.2 μm PAH band and the low L11.2/LIR in ULIRGs. Mon. Not. R. Astron. Soc. 497, 4614–4625 (2020).

    ADS  Google Scholar 

  65. Sturm, E. et al. Mid-Infrared line diagnostics of active galaxies. A spectroscopic AGN survey with ISO-SWS. Astron. Astrophys. 393, 821–841 (2002).

    ADS  CAS  Google Scholar 

  66. Tommasin, S., Spinoglio, L., Malkan, M. A. & Fazio, G. Spitzer-IRS high-resolution spectroscopy of 12 μm Seyfert galaxies. II. Results for the complete dataset. Astrophys. J. 709, 1257–1283 (2010).

    ADS  CAS  Google Scholar 

  67. Pérez-Montero, E. Deriving model-based Te-consistent chemical abundances in ionized gaseous nebulae. Mon. Not. R. Astron. Soc. 441, 2663–2675 (2014).

    ADS  Google Scholar 

  68. Mollá, M., García-Vargas, M. L. & Bressan, A. PopStar I: evolutionary synthesis model description. Mon. Not. R. Astron. Soc. 398, 451–470 (2009).

    ADS  Google Scholar 

  69. Pérez-Montero, E. & Amorín, R. Using photo-ionisation models to derive carbon and oxygen gas-phase abundances in the rest UV. Mon. Not. R. Astron. Soc. 467, 1287–1293 (2017).

    ADS  Google Scholar 

  70. Pérez-Montero, E. et al. A Bayesian-like approach to derive chemical abundances in type-2 active galactic nuclei based on photoionization models. Mon. Not. R. Astron. Soc. 689, 2652–2668 (2019).

    ADS  Google Scholar 

  71. Pérez-Montero, E., Amorín, R., Pérez-Díaz, B., Vílchez, J. M. & García-Benito, R. Assessing model-based carbon and oxygen abundance derivation from ultraviolet emission lines in AGNs. Mon. Not. R. Astron. Soc. 521, 1556–1569 (2023).

    ADS  Google Scholar 

  72. Jin, Y., Kewley, L. J. & Sutherland, R. Messenger Monte Carlo MAPPINGS V (M3)-A self-consistent, three-dimensional photoionization code. Astrophys. J. 927, 37 (2022).

    ADS  Google Scholar 

  73. Pérez-Montero, E., Díaz, A. I., Vílchez, J. M. & Kehrig, C. An empirical calibration of sulphur abundance in ionised gaseous nebulae. Astron. Astrophys. 449, 193–201 (2006).

    ADS  Google Scholar 

  74. Díaz, A. I. & Zamora, S. On the use of sulphur as a tracer for abundances in galaxies. Mon. Not. R. Astron. Soc. 511, 4377–4392 (2022).

    ADS  Google Scholar 

  75. Pérez-Montero, E. et al. The cosmic evolution of oxygen and nitrogen abundances in star-forming galaxies over the past 10 Gyr. Astron. Astrophys. 549, A25 (2013).

    Google Scholar 

  76. Kauffmann, G. et al. Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 341, 33–53 (2003).

    ADS  Google Scholar 

  77. Brinchmann, J. et al. The physical properties of star-forming galaxies in the low-redshift Universe. Mon. Not. R. Astron. Soc. 351, 1151–1179 (2004).

    ADS  CAS  Google Scholar 

  78. Balogh, M. L., Morris, S. L., Yee, H. K. C., Carlberg, R. G. & Ellingson, E. Differential galaxy evolution in cluster and field. Astrophys. J. 527, 54–79 (1999).

    ADS  CAS  Google Scholar 

  79. Worthey, G. & Ottaviani, D. L. Hγ and Hδ absorption features in stars and stellar populations. Astrophys. J. Suppl. Ser. 111, 377–386 (1997).

    ADS  CAS  Google Scholar 

  80. Parkash, V., Brown, M. J. I., Jarrett, T. H. & Bonne, N. J. Relationships between HI gas mass, stellar mass, and star formation rate of HICAT+WISE (HI-WISE) galaxies. Astrophys. J. 864, A40 (2018).

    ADS  Google Scholar 

  81. Cluver, M. E. et al. Galaxy and mass assembly (GAMA): mid-infrared properties and empirical relations from WISE. Astrophys. J. 782, A90 (2014).

    ADS  Google Scholar 

  82. Cluver, M. E. et al. Calibrating star formation in WISE using total infrared luminosity. Astrophys. J. 850, A68 (2017).

    ADS  Google Scholar 

  83. Brown, M. J. I. et al. Calibration of ultraviolet, mid-infrared, and radio star formation rate indicators. Astrophys. J. 847, A136 (2017).

    ADS  Google Scholar 

  84. Sheth, K. et al. The Spitzer Survey of stellar structure in galaxies (S4G). Publ. Astron. Soc. Pac. 122, 1397 (2010).

    ADS  Google Scholar 

  85. Muñoz-Mateos, J. C. et al. The impact of bars on disk breaks as probed by S4G imaging. Astrophys. J. 771, A49 (2013).

    Google Scholar 

  86. Querejeta, M. et al. The Spitzer Survey of stellar structure in galaxies (S4G): precise stellar mass distributions from automated dust correction at 3.6 μm. Astrophys. J. Suppl. Ser. 219, A5 (2015).

    ADS  Google Scholar 

  87. Muñoz-Mateos, J. C. et al. The Spitzer Survey of stellar structure in galaxies (S4G): stellar masses, sizes, and radial profiles of 2352 nearby galaxies. Astrophys. J. Suppl. Ser. 219, A3 (2015).

    ADS  Google Scholar 

  88. Bell, E. F., McIntosh, D. H., Katz, Z. & Weinberg, M. D. The optical and near-infrared properties of galaxies. I. Luminosity and stellar mass functions. Astrophys. J. Suppl. Ser. 149, 289–312 (2003).

    ADS  Google Scholar 

  89. Ciesla, L. et al. Constraining the properties of AGN host galaxies with spectral energy distribution modelling. Astron. Astrophys. 576, A10 (2015).

    Google Scholar 

  90. Boquien, M. et al. CIGALE: a Python code investigating galaxy emission. Astron. Astrophys. 622, A103 (2019).

    CAS  Google Scholar 

  91. Vika, M., Ciesla, L., Charmandaris, V., Xilouris, E. M. & Lebouteiller, V. The physical properties of Spitzer/IRS galaxies derived from their UV to 22 μm spectral energy distribution. Astron. Astrophys. 597, A51 (2017).

    ADS  Google Scholar 

  92. Elmegreen, B. G. & Burkert, A. Accretion-driven turbulence and the transition to global instability in young galaxy disks. Astrophys. J. 712, 294–302 (2010).

    ADS  Google Scholar 

  93. Di Matteo, P., Combes, F., Melchior, A. L. & Semelin, B. Star formation efficiency in galaxy interactions and mergers: a statistical study. Astron. Astrophys. 468, 61–81 (2007).

    ADS  Google Scholar 

  94. Di Matteo, P. et al. On the frequency, intensity, and duration of starburst episodes triggered by galaxy interactions and mergers. Astron. Astrophys. 492, 31–49 (2008).

    ADS  Google Scholar 

  95. Renaud, F., Bournaud, F., Kraljic, K. & Duc, P. A. Starbursts triggered by intergalactic tides and interstellar compressive turbulence. Mon. Not. R. Astron. Soc. 442, L33–L37 (2014).

    ADS  Google Scholar 

  96. Kroupa, P. On the variations of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    ADS  Google Scholar 

  97. Pilyugin, L. S., Thuan, T. X. & Vílchez, J. M. On the maximum value of the cosmic abundance of oxygen and the oxygen yield. Mon. Not. R. Astron. Soc. 376, 353–360 (2007).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

B.P.-D., E.P.-M. and J.M.V. acknowledge financial support from the grant CEX2021-001131-S funded by MCIN/AEI/ 10.13039/501100011033. B.P.-D., E.P.-M. and J.M.V. also acknowledge support from the Spanish MINECO grants 2016-79724-C4-4-P and PID2019-107408GB-C44. J.A.F.-O. acknowledges financial support by the Spanish Ministry of Science and Innovation (MCIN/AEI/10.13039/501100011033) and ‘ERDF A way of making Europe’ though the grant PID2021-124918NB-C44; MCIN and the European Union – NextGenerationEU through the Recovery and Resilience Facility project ICTS-MRR-2021-03-CEFCA. R.A. acknowledges support from ANID Fondecyt Regular 1202007.

Author information

Authors and Affiliations

Authors

Contributions

B.P.-D., E.P.-M. and J.A.F.-O. authored the draft version of this paper. B.P.-D. and J.A.F.-O. compiled the sample of galaxies from the literature as well as all the ancillary data required for the analysis. E.P.-M. and B.P.-D. developed the code used to estimate chemical abundances. J.M.V. and R.A. supervised the models, contributed to interpreting the results and contributed to the improvement of this manuscript.

Corresponding authors

Correspondence to Borja Pérez-Díaz, Enrique Pérez-Montero or Juan A. Fernández-Ontiveros.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Díaz, B., Pérez-Montero, E., Fernández-Ontiveros, J.A. et al. A departure from the mass–metallicity relation in merging galaxies due to an infall of metal-poor gas. Nat Astron 8, 368–376 (2024). https://doi.org/10.1038/s41550-023-02171-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02171-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing