Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An aspherical distribution for the explosive burning ash of core-collapse supernovae

Abstract

It is widely believed that asphericity in the explosion is the crucial ingredient leading to successful core-collapse (CC) supernovae. However, direct observational evidence for the explosion geometry and for the connection with the progenitor properties are still missing. Based on the thus-far largest late-phase spectroscopic sample of stripped-envelope CC supernovae, we demonstrate that about half of the explosions exhibit a substantial deviation from sphericity. For these aspherical CC supernovae, the spatial distributions of the oxygen-burning ash and the unburnt oxygen, as traced by the profiles of [Ca ii] λλ7291,7323 and [O i] λλ6300,6363 emissions, respectively, appear to be anticorrelated, which can be explained if the explosion is bipolar and the oxygen-rich material burnt into two detached iron-rich bubbles. Our combined analysis of the explosion geometry and the progenitor mass further suggests that the degree of asphericity grows with the mass of the carbon–oxygen core, which may be used to guide state-of-the-art simulations of CC supernova explosions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nebular spectroscopy of SE supernovae.
Fig. 2: Analysis of the linewidths.
Fig. 3: Configuration of the idealized axisymmetric model.
Fig. 4: The relation between the explosion geometry and the CO core mass of the progenitor.

Similar content being viewed by others

Data availability

Most of the spectra are available from WiseRep (https://www.wiserep.org/) and Supernova Database of Berkeley (http://heracles.astro.berkeley.edu/sndb/). The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

Astropy, Matplotlib, Numpy and Scipy are available from the Python Package Index (PyPI) (https://pypi.org/). Upon request, the first author will provide the Python code used to generate the model line profiles.

References

  1. Khokhlov, A. M. et al. Jet-induced explosions of core collapse supernovae. Astrophys. J. Lett. 524, L107–L110 (1997).

    Article  ADS  Google Scholar 

  2. Wang, L. et al. Bipolar supernova explosions. Astrophys. J. Lett. 550, 1030–1035 (2001).

    Article  Google Scholar 

  3. Maeda, K. & Nomoto, K. Bipolar supernova explosions: nucleosynthesis and implications for abundances in extremely metal-poor stars. Astrophys. J. 598, 1163–1200 (2003).

    Article  ADS  Google Scholar 

  4. Maeda, K., Nomoto, K., Mazzali, P. A. & Deng, J. Nebular spectra of SN 1998bw revisited: detailed study by one- and two-dimensional models. Astrophys. J. 640, 854–877 (2006).

    Article  ADS  Google Scholar 

  5. Woosley, S. E. & Bloom, J. S. The supernova gamma-ray burst connection. Annu. Rev. Astron. Astrophys. 44, 507–556 (2006).

    Article  ADS  Google Scholar 

  6. Nomoto, K. I., Iwamoto, K. & Suzuki, T. The evolution and explosion of massive binary stars and type Ib-Ic-IIb-IIL supernovae. Phys. Rep. 256, 173–191 (1995).

    Article  ADS  Google Scholar 

  7. Mazzali, P. A. et al. An asymmetric energetic type Ic supernova viewed off-axis, and a link to gamma ray bursts. Sci. 308, 1284–1287 (2005).

    Article  ADS  Google Scholar 

  8. Maeda, K. et al. Explosive nucleosynthesis in aspherical hypernova explosions and late-time spectra of SN 1998bw. Astrophys. J. 565, 405–412 (2002).

    Article  ADS  Google Scholar 

  9. Maeda, K. et al. Asphericity in supernova explosions from late-time spectroscopy. Sci. 319, 1220- (2008).

    Article  ADS  Google Scholar 

  10. Modjaz, M. et al. Double-peaked oxygen lines are not rare in nebular spectra of core-collapse supernovae. Astrophys. J. Lett. 687, L9 (2008).

    Article  ADS  Google Scholar 

  11. Taubenberger, S. et al. Nebular emission-line profiles of type Ib/c supernovae – probing the ejecta asphericity. Mon. Not. R. Astron. Soc. 397, 677–694 (2009).

  12. Milisavljevic, D. et al. Doublets and double peaks: late-time [O i] λλ6300,6364 line profiles of stripped-envelope, core-collapse supernovae. Astrophys. J. 709, 1343–1355 (2010).

    Article  ADS  Google Scholar 

  13. Fang, Q. et al. Statistical properties of the nebular spectra of 103 stripped-envelope core-collapse supernovae. Astrophys. J. 928, 151 (2022).

    Article  ADS  Google Scholar 

  14. Jerkstrand, A. in The Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 795–842 (Springer International Publishing, 2017).

  15. Dessart, L. et al. Nebular phase properties of supernova Ibc from He-star explosions. Astron. Astrophys. 656, A61 (2021).

    Article  Google Scholar 

  16. Prentice, S. J. et al. Oxygen and calcium nebular emission line relationships in core-collapse supernovae and Ca-rich transients. Mon. Not. R. Astron. Soc. 514, 5686–5705 (2022).

    Article  ADS  Google Scholar 

  17. van Baal, B. F. A. et al. Modelling supernova nebular lines in 3D with EXTRASS. Mon. Not. R. Astron. Soc. 523, 954 (2023).

    Article  ADS  Google Scholar 

  18. Maurer, J. I. et al. Characteristic velocities of stripped-envelope core-collapse supernova cores. Mon. Not. R. Astron. Soc. 402, 161–172 (2010).

    Article  ADS  Google Scholar 

  19. Fransson, C. & Chevalier, R. A. Late emission from supernovae – a window on stellar nucleosynthesis. Astrophys. J. 343, 323 (1989).

    Article  ADS  Google Scholar 

  20. Jerkstrand, A. et al. Late-time spectral line formation in type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh. Astron. Astrophys. 573, A12 (2015).

    Article  Google Scholar 

  21. Kuncarayakti, H. et al. Nebular phase observations of the type-Ib supernova iPTF13bvn favour a binary progenitor. Astron. Astrophys. 579, A95 (2015).

    Article  Google Scholar 

  22. Fang, Q. et al. A hybrid envelope-stripping mechanism for massive stars from supernova nebular spectroscopy. Nat. Astron. 3, 434–439 (2019).

    Article  ADS  Google Scholar 

  23. Dessart, L. et al. Modeling of the nebular-phase spectral evolution of stripped-envelope supernovae. New grids from 100 to 450 days. Astron. Astrophys. 677, A7 (2023).

    Article  Google Scholar 

  24. Fang, Q. & Maeda, K. Inferring the progenitor mass–kinetic energy relation of stripped-envelope core-collapse supernovae from nebular spectroscopy. Astrophys. J. 949, 93 (2023).

    Article  ADS  Google Scholar 

  25. Nakamura, K. et al. Systematic features of axisymmetric neutrino-driven core-collapse supernova models in multiple progenitors. Publ. Astron. Soc. Jpn 67, 107 (2015).

    Article  ADS  Google Scholar 

  26. Woosley, S. E., Heger, A. & Weaver, T. A. The evolution and explosion of massive stars. Rev. Mod. Phys. 74, 1015–1071 (2002).

    Article  ADS  Google Scholar 

  27. Limongi, M. & Chieffi, A. Evolution, explosion, and nucleosynthesis of core-collapse supernovae. Astrophys. J. 592, 404–433 (2003).

    Article  ADS  Google Scholar 

  28. Benjamin, D. J. et al. Redefine statistical significance. Nat. Hum. Behav. 2, 6–10 (2018).

    Article  Google Scholar 

  29. Burrows, A. & Vartanyan, D. Core-collapse supernova explosion theory. Nature 589, 29–39 (2021).

    Article  ADS  Google Scholar 

  30. Blondin, J. M., Mezzacappa, A. & DeMarino, C. Stability of standing accretion shocks, with an eye toward core-collapse supernovae. Astrophys. J. 584, 971 (2003).

    Article  ADS  Google Scholar 

  31. Fernández, R. Three-dimensional simulations of SASI- and convection-dominated core-collapse supernovae. Mon. Not. R. Astron. Soc. 452, 2071 (2015).

    Article  ADS  Google Scholar 

  32. Matsumoto, J. et al. 2D numerical study for magnetic field dependence of neutrino-driven core-collapse supernova models. Mon. Not. R. Astron. Soc. 499, 4174–4194 (2020).

    Article  ADS  Google Scholar 

  33. Varma, V., Müller, B. & Schneider, F. R. N. 3D simulations of strongly magnetized non-rotating supernovae: explosion dynamics and remnant properties. Mon. Not. R. Astron. Soc. 518, 3622–3636 (2023).

    Article  ADS  Google Scholar 

  34. Reichert, M. et al. Magnetorotational supernovae: a nucleosynthetic analysis of sophisticated 3D models. Mon. Not. R. Astron. Soc. 518, 1557–1583 (2023).

    Article  ADS  Google Scholar 

  35. Shivvers, I. et al. The Berkeley sample of stripped-envelope supernovae. Mon. Not. R. Astron. Soc. 482, 1545–1556 (2019).

    Article  ADS  Google Scholar 

  36. Yaron, O. & Gal-Yam, A. WISeREP – an interactive supernova data repository. Publ. Astron. Soc. Pac. 124, 668–681 (2012).

    Article  ADS  Google Scholar 

  37. Galama, T. J. et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395, 670–672 (1998).

    Article  ADS  Google Scholar 

  38. Iwamoto, K. et al. A hypernova model for the supernova associated with the γ-ray burst of 25 April 1998. Nature 395, 672–674 (1998).

    Article  ADS  Google Scholar 

  39. Pian, E. et al. An optical supernova associated with the X-ray flash XRF 060218. Nature 442, 1011–1013 (2006).

    Article  ADS  Google Scholar 

  40. Mazzali, P. A. et al. A neutron-star-driven X-ray flash associated with supernova SN 2006aj. Nature 442, 1018–1020 (2006).

    Article  ADS  Google Scholar 

  41. Milisavljevic, D. et al. The broad-lined type Ic SN 2012ap and the nature of relativistic supernovae lacking a gamma-ray burst detection. Astrophys. J. 799, 51 (2015).

    Article  ADS  Google Scholar 

  42. Chakraborti, S. et al. A missing-link in the supernova-GRB connection: the case of SN 2012ap. Astrophys. J. 805, 187 (2015).

    Article  ADS  Google Scholar 

  43. Maeda, K. et al. The unique type Ib supernova 2005bf at nebular phases: a possible birth event of a strongly magnetized neutron star. Astrophys. J. 666, 1069–1082 (2007).

    Article  ADS  Google Scholar 

  44. Makarov, D. et al. HyperLEDA. III. The catalogue of extragalactic distances. Astron. Astrophys. 570, A13 (2014).

    Article  Google Scholar 

  45. Fang, Q. & Maeda, K. The origin of the Ha-like structure in nebular spectra of type IIb supernovae. Astrophys. J. 864, 47 (2018).

    Article  ADS  Google Scholar 

  46. Jerkstrand, A. et al. Constraints on explosive silicon burning in core-collapse supernovae from measured Ni/Fe ratios. Astrophys. J. 807, 110 (2015).

    Article  ADS  Google Scholar 

  47. Jerkstrand, A. et al. Supersolar Ni/Fe production in the type IIp SN 2012ec. Mon. Not. R. Astron. Soc. 448, 2482–2494 (2015).

    Article  ADS  Google Scholar 

  48. Dong, S. et al. Type Ia supernovae with bimodal explosions are common – possible smoking gun for direct collisions of white dwarfs. Mon. Not. R. Astron. Soc. 454, L61 (2015).

    Article  ADS  Google Scholar 

  49. Patat, F. et al. The metamorphosis of SN 1998bw. Astrophys. J. 555, 900 (2001).

    Article  ADS  Google Scholar 

  50. Maeda, K. et al. SN 2006aj associated with XRF 060218 at late phases: nucleosynthesis signature of a neutron star-driven explosion. Astrophys. J. Lett. 658, L5–L8 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Jiang, S. Mattila and A. Jerkstrand for reviewing the presubmission manuscript and providing a number of constructive suggestions. Q.F. acknowledges support from the Japan Society for the Promotion of Science (JSPS) through KAKENHI grant 20J23342. K.M. acknowledges support from JSPS KAKENHI grants JP18H05223, JP20H00174 and JP20H04737. H.K. and T.N. are funded by the Research Council of Finland through projects 324504, 328898 and 353019. This work is supported by the JSPS Open Partnership Bilateral Joint Research Projects between Japan and Finland (K.M. and H.K.; JPJSBP120229923).

Author information

Authors and Affiliations

Authors

Contributions

Q.F., K.M. and T.N. initialized the project. Q.F. led the nebular spectroscopy analysis, model construction and the manuscript preparation. K.M. organized the efforts to interpret the results and assisted in manuscript preparation. H.K. and T.N. contributed to the spectroscopy analysis and interpretations. All authors contributed to the discussions and editing the manuscript.

Corresponding authors

Correspondence to Qiliang Fang or Keiichi Maeda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Vishnu Varma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Figs. 1–6 and refs. 1–27.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Q., Maeda, K., Kuncarayakti, H. et al. An aspherical distribution for the explosive burning ash of core-collapse supernovae. Nat Astron 8, 111–118 (2024). https://doi.org/10.1038/s41550-023-02120-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02120-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing