Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct images and spectroscopy of a giant protoplanet driving spiral arms in MWC 758

Abstract

Understanding the driving forces behind spiral arms in protoplanetary disks remains a challenge due to the faintness of young giant planets. MWC 758 hosts such a protoplanetary disk with a two-armed spiral pattern that is suggested to be driven by an external giant planet. We present observations in the thermal infrared that are uniquely sensitive to redder (that is, colder, or more attenuated) planets than past observations at shorter wavelengths. We detect a giant protoplanet, MWC 758c, at a projected separation of roughly 100 au from the star. The spectrum of MWC 758c is distinct from the rest of the disk and consistent with emission from a planetary atmosphere with Teff = 500 ± 100 K for a low level of extinction (AV ≤ 30), or a hotter object with a higher level of extinction. Both scenarios are commensurate with the predicted properties of the companion responsible for driving the spiral arms. MWC 758c provides evidence that spiral arms in protoplanetary disks can be caused by cold giant planets or by those whose optical emission is highly attenuated. MWC 758c stands out both as one of the youngest giant planets known, and as one of the coldest and/or most attenuated. Furthermore, MWC 758c is among the first planets to be observed within a system hosting a protoplanetary disk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Images of MWC 758 from LBTI/ALES taken on UT 14 November 2019.
Fig. 2: LBTI/ALES spectrum of MWC 758.
Fig. 3: Spectrum of MWC 758c compared to model atmospheres.
Fig. 4: Teff versus AV of MWC 758c and Teff versus age of directly imaged companions.

Similar content being viewed by others

Data availability

All LBTI data are available online via the LBTO archive (http://archive.lbto.org).

Code availability

All software, codes and data processing scripts that were developed for this study are available at https://github.com/astrowagner/MWC758_ALES.

References

  1. Huang, J. et al. The disk substructures at high angular resolution project (DSHARP). II. Characteristics of annular substructures. Astrophys. J. Lett. 869, L42 (2018).

    Article  ADS  Google Scholar 

  2. Benisty, M. et al. Optical and near-infrared view of planet-forming disks and protoplanets. Preprint at arXiv https://doi.org/10.48550/arXiv.2203.09991 (2022).

  3. Muto, T. et al. Discovery of small-scale spiral structures in the disk of SAO 206462 (HD 135344B): implications for the physical state of the disk from spiral density wave theory. Astrophys. J. Lett. 748, L22 (2012).

    Article  ADS  Google Scholar 

  4. Dong, R., Zhu, Z., Rafikov, R. R. & Stone, J. M. Observational signatures of planets in protoplanetary disks: spiral arms observed in scattered light imaging can be induced by planets. Astrophys. J. Lett. 809, L5 (2015).

    Article  ADS  Google Scholar 

  5. Dong, R. et al. An M dwarf companion and its induced spiral arms in the HD 100453 protoplanetary disk. Astrophys. J. Lett. 816, L12 (2016).

    Article  ADS  Google Scholar 

  6. Wagner, K. et al. The orbit of the companion to HD 100453A: binary-driven spiral arms in a protoplanetary disk. Astrophys. J. 854, 130 (2018).

    Article  ADS  Google Scholar 

  7. Dong, R., Najita, J. R. & Brittain, S. Spiral arms in disks: planets or gravitational instability? Astrophys. J. 862, 103 (2018).

    Article  ADS  Google Scholar 

  8. Bae, J. & Zhu, Z. Planet-driven spiral arms in protoplanetary disks. II. Implications. Astrophys. J. 859, 119 (2018).

    Article  ADS  Google Scholar 

  9. Cugno, G. et al. A search for accreting young companions embedded in circumstellar disks. High-contrast Hα imaging with VLT/SPHERE. Astron. Astrophys. 622, A156 (2019).

    Article  Google Scholar 

  10. Zurlo, A. et al. The widest Hα survey of accreting protoplanets around nearby transition disks. Astron. Astrophys. 633, A119 (2020).

    Article  Google Scholar 

  11. Wagner, K. et al. Thermal infrared imaging of MWC 758 with the Large Binocular Telescope: planetary-driven spiral arms? Astrophys. J. 882, 20 (2019).

    Article  ADS  Google Scholar 

  12. Gaia Collaborationet al. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).

    Article  Google Scholar 

  13. Meeus, G. et al. Observations of Herbig Ae/Be stars with Herschel/PACS. The atomic and molecular contents of their protoplanetary discs. Astron. Astrophys 544, A78 (2012).

    Article  Google Scholar 

  14. Grady, C. A. et al. Spiral arms in the asymmetrically illuminated disk of MWC 758 and constraints on giant planets. Astrophys. J. 762, 48 (2013).

    Article  ADS  Google Scholar 

  15. Benisty, M. et al. Asymmetric features in the protoplanetary disk MWC 758. Astron. Astrophys. 578, L6 (2015).

    Article  ADS  Google Scholar 

  16. Reggiani, M. et al. Discovery of a point-like source and a third spiral arm in the transition disk around the Herbig Ae star MWC 758. Astron. Astrophys. 611, A74 (2018).

    Article  Google Scholar 

  17. Fung, J. & Dong, R. Inferring planet mass from spiral structures in protoplanetary disks. Astrophys. J. Lett. 815, L21 (2015).

    Article  ADS  Google Scholar 

  18. Yu, S.-Y., Ho, L. C. & Zhu, Z. A tight relation between spiral arm pitch angle and protoplanetary disk mass. Astrophys. J. 877, 100 (2019).

    Article  ADS  Google Scholar 

  19. Kratter, K. & Lodato, G. Gravitational instabilities in circumstellar disks. Annu. Rev. Astron. Astrophys. 54, 271 (2016).

    Article  ADS  Google Scholar 

  20. Ren, B. et al. A decade of MWC 758 disk images: where are the spiral-arm-driving planets? Astrophys. J. Lett. 857, L9 (2018).

    Article  ADS  Google Scholar 

  21. Ren, B. et al. Dynamical evidence of a spiral arm-driving planet in the MWC 758 protoplanetary disk. Astrophys. J. Lett. 898, L38 (2020).

    Article  ADS  Google Scholar 

  22. Hinz, P. M. et al. Overview of LBTI: a multipurpose facility for high spatial resolution observations. Proc. SPIE 9907, 990704 (2016).

    Article  Google Scholar 

  23. Skrutskie, M. F. et al. The Large Binocular Telescope mid-infrared camera (LMIRcam): final design and status. Proc. SPIE 7735, 77353H (2010).

    Article  Google Scholar 

  24. Leisenring, J. M. et al. On-sky operations and performance of LMIRcam at the Large Binocular Telescope. Proc. SPIE 8446, 84464F (2012).

    Article  Google Scholar 

  25. Skemer, A. J. et al. ALES: overview and upgrades. Proc. SPIE 10702, 107020C (2018).

    Google Scholar 

  26. Stone, J. M. et al. On-sky operations with the ALES integral field spectrograph. Proc. SPIE 10702, 107023F (2018).

    Google Scholar 

  27. Rayner, J. T. et al. SpeX: a medium-resolution 0.8-5.5 micron spectrograph and imager for the NASA Infrared Telescope Facility. Publ. Astron. Soc. Pac. 115, 362 (2003).

    Article  ADS  Google Scholar 

  28. Beuzit, J.-L. et al. SPHERE: the exoplanet imager for the Very Large Telescope. Astron. Astrophys. 631, A155 (2019).

    Article  Google Scholar 

  29. Dong, R. et al. The eccentric cavity, triple rings, two-armed spirals, and double clumps of the MWC 758 disk. Astrophys. J. 860, 124 (2018).

    Article  ADS  Google Scholar 

  30. Cushing, M. C., Rayner, J. T. & Vacca, W. D. An infrared spectroscopic sequence of M, L, and T dwarfs. Astrophys. J. 623, 1115 (2005).

    Article  ADS  Google Scholar 

  31. Karalidi, T. et al. The Sonora substellar atmosphere models. II. Cholla: a grid of cloud-free, solar metallicity models in chemical disequilibrium for the JWST era. Astrophys. J. 923, 269 (2021).

    Article  ADS  Google Scholar 

  32. Allard, F., Homeier, D. & Freytag, B. Models of very-low-mass stars, brown dwarfs, and exoplanets. Philos. Trans. R. Soc. 370, 2765 (2012).

    Article  ADS  Google Scholar 

  33. Marley, M. S., Fortney, J. J., Hubickyj, O., Bodenheimer, P. & Lissauer, J. J. On the luminosity of young Jupiters. Astrophys. J. 655, 541 (2007).

    Article  ADS  Google Scholar 

  34. Wang, S. & Chen, X. The optical to mid-infrared extinction law based on the APOGEE, Gaia DR2, Pan-STARRS1, SDSS, APASS, 2MASS, and WISE surveys. Astrophys. J. 877, 116 (2019).

    Article  ADS  Google Scholar 

  35. Szulágyi, J., Dullemond, C. P., Pohl, A. & Quanz, S. P. Observability of forming planets and their circumplanetary discs II. SEDs and near-infrared fluxes. Mon. Not. R. Astron. Soc. 487, 1248 (2019).

    Article  ADS  Google Scholar 

  36. Sanchis, E., Picogna, G., Ercolano, B., Testi, L. & Rosotti, G. Detectability of embedded protoplanets from hydrodynamical simulations. Mon. Not. R. Astron. Soc. 492, 3440 (2020).

    Article  ADS  Google Scholar 

  37. Chen, X. & Szulágyi, J. Observability of forming planets and their circumplanetary disk IV. With JWST & ELT. Mon. Not. R. Astron. Soc. 516, 506 (2022).

    Article  ADS  Google Scholar 

  38. Spiegel, D. S. & Burrows, A. Spectral and photometric diagnostics of giant planet formation scenarios. Astrophys. J. 745, 174 (2012).

    Article  ADS  Google Scholar 

  39. Marley, M. S. et al. The Sonora brown dwarf atmosphere and evolution models. I. Model description and application to cloudless atmospheres in Rainout chemical equilibrium. Astrophys. J. 920, 85 (2021).

    Article  ADS  Google Scholar 

  40. Baraffe, I., Chabrier, G., Barman, T. S., Allard, F. & Hauschildt, P. H. Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458. Astron. Astrophys. 402, 701 (2003).

    Article  ADS  Google Scholar 

  41. Boccaletti, A. et al. Investigating point sources in MWC 758 with SPHERE. Astron. Astrophys. 652, L8 (2021).

    Article  ADS  Google Scholar 

  42. Cugno, G. et al. Molecular mapping of the PDS70 system. No molecular absorption signatures from the forming planet PDS70 b. Astron. Astrophys. 653, A12 (2021).

    Article  Google Scholar 

  43. Hashimoto, J. et al. Accretion properties of PDS 70b with MUSE. Astron. J. 159, 222 (2020).

    Article  ADS  Google Scholar 

  44. Uyama, T. et al. Keck/OSIRIS Paβ high-contrast imaging and updated constraints on PDS 70b. Astron. J. 162, 214 (2021).

    Article  ADS  Google Scholar 

  45. Wang, J. J. et al. Constraining the nature of the PDS 70 protoplanets with VLTI/GRAVITY. Astron. J. 161, 148 (2021).

    Article  ADS  Google Scholar 

  46. Currie, T. et al. Images of embedded Jovian planet formation at a wide separation around AB Aurigae. Nat. Astron 6, 751 (2022).

    Article  ADS  Google Scholar 

  47. Fung, J., Zhu, Z. & Chiang, E. Circumplanetary disk dynamics in the isothermal and adiabatic limits. Astrophys. J. 887, 152 (2019).

    Article  ADS  Google Scholar 

  48. Shuai, L. et al. Stellar flyby analysis for spiral arm hosts with Gaia DR3. Atrophys. J. Supp. 263, 31 (2022).

    Article  ADS  Google Scholar 

  49. Zapata, L. A. et al. Tidal interaction between the UX Tauri A/C disk system revealed by ALMA. Astrophys. J. 896, 132 (2020).

    Article  ADS  Google Scholar 

  50. Kuo, I.-H. G., Yen, H.-W., Gu, P.-G. & Chang, T.-E. Kinematical constraint on eccentricity in the protoplanetary disk MWC 758 with ALMA. Astrophys. J. 938, 50 (2022).

    Article  ADS  Google Scholar 

  51. Fung, J., Shi, J.-M. & Chiang, E. How empty are disk gaps opened by giant planets? Astrophys. J. 782, 88 (2014).

    Article  ADS  Google Scholar 

  52. Zhu, Z., Dong, R., Stone, J. M. & Rafikov, R. R. The structure of spiral shocks excited by planetary-mass companions. Astrophys. J. 813, 88 (2015).

    Article  ADS  Google Scholar 

  53. Boehler, Y. et al. The complex morphology of the young disk MWC 758: spirals and dust clumps around a large cavity. Astrophys. J. 853, 162 (2018).

    Article  ADS  Google Scholar 

  54. Li, H., Finn, J. M., Lovelace, R. V. E. & Colgate, S. A. Rossby wave instability of thin accretion disks. II. Detailed linear theory. Astrophys. J. 533, 1023 (2000).

    Article  ADS  Google Scholar 

  55. Hammer, M., Pinilla, P., Kratter, K. M. & Lin, M.-K. Observational diagnostics of elongated planet-induced vortices with realistic planet formation time-scales. Mon. Not. R. Astron. Soc. 482, 3609 (2019).

    Article  ADS  Google Scholar 

  56. Morley, C. V. et al. An L band spectrum of the coldest brown dwarf. Astrophys. J. 858, 97 (2018).

    Article  ADS  Google Scholar 

  57. Macintosh, B. et al. Discovery and spectroscopy of the young Jovian planet 51 Eri b with the Gemini Planet Imager. Science 350, 64 (2015).

    Article  ADS  Google Scholar 

  58. Skemer, A. J. et al. The first spectrum of the coldest brown dwarf. Astrophys. J. Lett. 826, 17 (2016).

    Article  ADS  Google Scholar 

  59. Follette, K. B. et al. The Giant Accreting Protoplanet Survey (GAPlanetS)–results from a six year campaign to image accreting protoplanets. Astron. J. 165, 225 (2023).

    Article  ADS  Google Scholar 

  60. Briesemeister, Z. et al. MEAD: data reduction pipeline for ALES integral field spectrograph and LBTI thermal infrared calibration unit. Proc. SPIE 10702, 107022Q (2018).

    Google Scholar 

  61. Stone, J. M. et al. High-contrast thermal infrared spectroscopy with ALES: the 3-4 μm spectrum of κ Andromedae b. Astron. J. 160, 262 (2020).

    Article  ADS  Google Scholar 

  62. Doelman, D. S. et al. L-band integral field spectroscopy of the HR 8799 planetary system. Astron. J. 163, 217 (2022).

    Article  ADS  Google Scholar 

  63. Marois, C., Lafrenière, D., Doyon, R., Macintosh, B. & Nadeau, D. Angular differential imaging: a powerful high-contrast imaging technique. Astrophys. J. 641, 556 (2006).

    Article  ADS  Google Scholar 

  64. Soummer, R., Pueyo, L. & Larkin, J. Detection and characterization of exoplanets and disks using projections on Karhunen-Loève Eigenimages. Astrophys. J. Lett. 755, L28 (2012).

    Article  ADS  Google Scholar 

  65. Bottom, M., Ruane, G. & Mawet, D. Noise-weighted angular differential imaging. Res. Notes Am. Astron. Soc. 1, 30 (2017).

    ADS  Google Scholar 

  66. Wagner, K. et al. Direct imaging discovery of a young brown dwarf companion to an A2V star. Astrophys. J. Lett. 902, L6 (2020).

    Article  ADS  Google Scholar 

  67. Cushing, M. C., Vacca, W. D. & Rayner, J. T. Spextool: a spectral extraction package for SpeX, a 0.8-5.5 micron cross-dispersed spectrograph. Publ. Astron. Soc. Pac. 116, 362 (2004).

    Article  ADS  Google Scholar 

  68. Lagrange, A.-M. et al. A giant planet imaged in the disk of the young star β Pictoris. Science 329, 57–59 (2010).

    Article  ADS  Google Scholar 

  69. Greco, J. P. & Brandt, T. D. The measurement, treatment, and impact of spectral covariance and Bayesian priors in integral-field spectroscopy of exoplanets. Astrophys. J. 833, 134 (2016).

    Article  ADS  Google Scholar 

  70. Chabrier, G., Baraffe, I., Allard, F. & Hauschildt, P. Evolutionary models for very low-mass stars and brown dwarfs with dusty atmospheres. Astrophys. J. 542, 464 (2000).

    Article  ADS  Google Scholar 

  71. Miles, B. E. et al. Observations of disequilibrium CO chemistry in the coldest brown dwarfs. Astron. J. 160, 63 (2020).

    Article  ADS  Google Scholar 

  72. Stone, J. M. et al. The LEECH exoplanet imaging survey: limits on planet occurrence rates under conservative assumptions. Astron. J. 156, 286 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank T. Karalidi, J. Szulágyi, T. Currie, R. Fernandes, B. Ren and C. Xie for conversations that were helpful to our analysis. Support for this work was provided by NASA through the NASA Hubble Fellowship grant no. HST-HF2-51472.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract no. NAS5-26555. This paper is based on work funded by NSF Grant no. 1608834. The results reported herein benefited from collaborations and/or information exchange within NASA’s Nexus for Exoplanet System Science research coordination network sponsored by NASA’s Science Mission Directorate. M.L.S., J.W. and K.L. were supported in part by NASA XRP program via grant nos. 80NSSC20K0252 and NNX17AF88G. F.M. acknowledges funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 101053020, project Dust2Planets). We acknowledge the expertise of the Large Binocular Telescope Observatory (LBTO) staff, including J. Power and J. Carlson, for their support of these observations, and to LBTO director C. Veillet for enabling these observations through director’s discretionary time.

Author information

Authors and Affiliations

Authors

Contributions

Observations were carried out by K.W., J.S., S.E., E.S., M.S., A. Bayyari, K.A., A. Boccaletti and R.W.R. Data analysis was carried out by K.W., J.S. and A.S. Interpretation of results and preparation of the manuscript were done by K.W., J.S., A.S., S.E., R.D., D.A., E.S., J.L., M.S., K.K., T.B., M.M., B.M., A. Bayyari, K.A., A. Boccaletti, T.U., C.E.W., P.H., Z.B., K.L., F.M., E.P., R.W.R., M.S. and J.W.

Corresponding authors

Correspondence to Kevin Wagner or Ruobing Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary information.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, K., Stone, J., Skemer, A. et al. Direct images and spectroscopy of a giant protoplanet driving spiral arms in MWC 758. Nat Astron 7, 1208–1217 (2023). https://doi.org/10.1038/s41550-023-02028-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02028-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing