Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Azimuthal C/O variations in a planet-forming disk

An Author Correction to this article was published on 04 May 2023

This article has been updated

Abstract

The elemental carbon-to-oxygen ratio (C/O) in the atmosphere of a giant planet is a promising diagnostic of that planet’s formation history in a protoplanetary disk. Alongside efforts in the exoplanet community to measure the C/O ratio in planetary atmospheres, observational and theoretical studies of disks are increasingly focused on understanding how the gas-phase C/O ratio varies both with radial location and between disks. This is mostly tied to the icelines of major volatile carriers such as CO and H2O. Using ALMA observations of CS and SO, we have found evidence for an entirely unexpected type of C/O variation in the protoplanetary disk around HD 100546: an azimuthal variation from a typical, oxygen-dominated ratio (C/O ≈ 0.5) to a carbon-dominated ratio (C/O  1.0). We show that the spatial distribution and peculiar line kinematics of both CS and SO molecules can be well explained by azimuthal variations in the C/O ratio. We propose a shadowing mechanism that could lead to such a chemical dichotomy. Our results imply that tracing the formation history of giant exoplanets using their atmospheric C/O ratios will need to take into account time-dependent azimuthal C/O variations in a planet’s accretion zone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Azimuthal disparity of SO and CS emission.
Fig. 2: Detected and modelled SO and CS emission in HD 100546.
Fig. 3: Spectral line profiles.
Fig. 4: Geometry of the HD 100546 disk model.
Fig. 5: HD 100546 model dust temperature map.
Fig. 6: Cooling, freeze-out and chemical timescales.

Similar content being viewed by others

Data availability

The data presented here are from the ALMA Cycle 4 programme 2016.1.01339.S (principal investigator M. Kama). The raw data are publicly available from the ALMA archive. The reduced data and final imaging products are available upon reasonable request from the corresponding author.

Code availability

The ALMA data were reduced using CASA version 5.6.1-8, which is available at https://casa.nrao.edu/. Outputs from the DALI physical-chemical disk models are available at https://doi.org/10.5281/zenodo.7734194.

Change history

References

  1. Madhusudhan, N. C/O ratio as a dimension for characterizing exoplanetary atmopsheres. Astrophys. J. 758, 36 (2012).

    Article  ADS  Google Scholar 

  2. Cridland, A. J., Pudritz, R. E. & Alessi, M. Composition of early planetary atmospheres—I. Connecting disc astrochemistry to the formation of planetary atmospheres. Mon. Not. R. Astron. Soc. 461, 3274–3295 (2016).

    Article  ADS  Google Scholar 

  3. Mordasini, C., van Boekel, R., Molliè re, P., Henning, T. & Benneke, B. The imprint of exoplanet formation history on observable present-day spectra of hot Jupiters. Astrophys. J. 832, 41 (2016).

    Article  ADS  Google Scholar 

  4. Oberg, K. I., Murray-Clay, R. & Bergin, E. A. The effects of snowlines on C/O in planetary atmospheres. Astrophys. J. Lett. 743, L16 (2011).

    Article  ADS  Google Scholar 

  5. Madhusudhan, N., Knutson, H., Fortney, J. J. & Barman, T. in Protostars and Planets VI (eds Beuther, H. et al.) 739–762 (University of Arizona Press, 2014).

  6. Bergin, E. A. et al. Hydrocarbon emission rings in protoplanetary disks induced by dust evolution. Astrophys. J. 831, 101 (2016).

    Article  ADS  Google Scholar 

  7. Booth, R. A., Clarke, C. J., Madhusudhan, N. & Ilee, J. D. Chemical enrichment of giant planets and discs due to pebble drift. Mon. Not. R. Astron. Soc. 469, 3994–4011 (2017).

    Article  ADS  Google Scholar 

  8. Krijt, S., Schwarz, K. R., Bergin, E. A. & Ciesla, F. J. Transport of CO in protoplanetary disks: consequences of pebble formation, settling, and radial drift. Astrophys. J. 864, 78 (2018).

    Article  ADS  Google Scholar 

  9. Booth, R. A. & Ilee, J. D. Planet-forming material in a protoplanetary disc: the interplay between chemical evolution and pebble drift. Mon. Not. R. Astron. Soc. 487, 3998–4011 (2019).

    Article  ADS  Google Scholar 

  10. Cridland, A. J., Eistrup, C. & van Dishoeck, E. F. Connecting planet formation and astrochemistry. Refractory carbon depletion leading to super-stellar C/O in giant planetary atmospheres. Astron. Astrophys. 627, A127 (2019).

    Article  Google Scholar 

  11. van ’t Hoff, M. L. R., Bergin, E. A., Jørgensen, J. K. & Blake, G. A. Carbon-grain sublimation: a new top-down component of protostellar chemistry. Astrophys. J. 897, L38 (2020).

    Article  ADS  Google Scholar 

  12. Bosman, A. D. et al. Molecules with ALMA at planet-forming scales (MAPS). VII. Substellar O/H and C/H and superstellar C/O in planet-feeding gas. Astrophys. J. Suppl. Ser. 257, 7 (2021).

    Article  ADS  Google Scholar 

  13. Turrini, D. et al. Tracing the formation history of giant planets in protoplanetary disks with carbon, oxygen, nitrogen, and sulfur. Astrophys. J. 909, 40 (2021).

    Article  ADS  Google Scholar 

  14. Van Clepper, E., Bergner, J., Bosman, A., Bergin, E. & Ciesla, F. Chemical feedback of pebble growth: impacts on CO depletion and C/O ratios. Astrophys. J. 927, 206 (2022).

    Article  ADS  Google Scholar 

  15. Hobbs, R., Shorttle, O. & Madhusudhan, N. Molecular tracers of planet formation in the atmospheres of hot Jupiters. Mon. Not. R. Astron. Soc. 516, 1032–1046 (2022).

    Article  ADS  Google Scholar 

  16. Favre, C., Cleeves, L. I., Bergin, E. A., Qi, C. & Blake, G. A. A significantly low CO abundance toward the TW Hya protoplanetary disk: a path to active carbon chemistry? Astrophys. J. Lett. 776, L38 (2013).

    Article  ADS  Google Scholar 

  17. Qi, C. et al. Imaging of the CO snow line in a solar nebula analog. Science 341, 630–632 (2013).

    Article  ADS  Google Scholar 

  18. van der Marel, N. et al. Resolved gas cavities in transitional disks inferred from CO isotopologs with ALMA. Astron. Astrophys. 585, A58 (2016).

    Article  Google Scholar 

  19. Du, F. et al. Survey of cold water lines in protoplanetary disks: indications of systematic volatile depletion. Astrophys. J. 842, 98 (2017).

    Article  ADS  Google Scholar 

  20. Cleeves, L. I. et al. Constraining gas-phase carbon, oxygen, and nitrogen in the IM lup protoplanetary disk. Astrophys. J. 865, 155 (2018).

    Article  ADS  Google Scholar 

  21. Zhang, K., Bergin, E. A., Schwarz, K., Krijt, S. & Ciesla, F. Systematic variations of CO gas abundance with radius in gas-rich protoplanetary disks. Astrophys. J. 883, 98 (2019).

    Article  ADS  Google Scholar 

  22. Zhang, K., Bosman, A. D. & Bergin, E. A. Excess C/H in protoplanetary disk gas from icy pebble drift across the CO snowline. Astrophys. J. Lett. 891, L16 (2020).

    Article  ADS  Google Scholar 

  23. Miotello, A. et al. Bright C2H emission in protoplanetary discs in Lupus: high volatile C/O > 1 ratios. Astron. Astrophys. 631, A69 (2019).

    Article  Google Scholar 

  24. Bergner, J. B. et al. A survey of C2H, HCN, and C18O in protoplanetary disks. Astrophys. J. 876, 25 (2019).

    Article  ADS  Google Scholar 

  25. Semenov, D. et al. Chemistry in disks. Astron. Astrophys. 617, A28 (2018).

    Article  Google Scholar 

  26. Booth, A. S., van der Marel, N., Leemker, M., van Dishoeck, E. F. & Ohashi, S. A major asymmetric ice trap in a planet-forming disk. Astron. Astrophys. 651, L6 (2021).

    Article  ADS  Google Scholar 

  27. Dutrey, A. et al. Chemistry in disks. V. Sulfur-bearing molecules in the protoplanetary disks surrounding LkCa15, MWC480, DM Tauri, and GO Tauri. Astron. Astrophys. 535, A104 (2011).

    Article  Google Scholar 

  28. Le Gal, R. et al. Molecules with ALMA at planet-forming scales (MAPS). XII. Inferring the C/O and S/H ratios in protoplanetary disks with sulfur molecules. Astrophys. J. Suppl. Ser. 257, 12 (2021).

    Article  ADS  Google Scholar 

  29. Booth, A. S. et al. Sulphur monoxide emission tracing an embedded planet in the HD 100546 protoplanetary disk. Astron. Astrophys. 669, A53 (2023).

    Article  Google Scholar 

  30. Arun, R. et al. On the mass accretion rate and infrared excess in Herbig Ae/Be stars. Astron. J. 157, 159 (2019).

    Article  ADS  Google Scholar 

  31. Walsh, C. et al. ALMA hints at the presence of two companions in the disk around HD 100546. Astrophys. J. 791, L6 (2014).

    Article  ADS  Google Scholar 

  32. Fedele, D., Toci, C., Maud, L. T. & Lodato, G. ALMA 870 μm continuum observations of HD 100546. Astron. Astrophys. 651, A90 (2021).

    Article  ADS  Google Scholar 

  33. Quanz, S. P. et al. Confirmation and characterization of the protoplanet HD 100546 b—direct evidence for gas giant planet formation at 50 au. Astrophys. J. 807, 64 (2015).

    Article  ADS  Google Scholar 

  34. Currie, T. et al. Resolving the HD 100546 protoplanetary system with the gemini planet imager: evidence for multiple forming, accreting planets. Astrophys. J. 814, L27 (2015).

    Article  ADS  Google Scholar 

  35. Pinilla, P., Birnstiel, T. & Walsh, C. Sequential planet formation in the HD 100546 protoplanetary disk? Astron. Astrophys. 580, A105 (2015).

    Article  ADS  Google Scholar 

  36. Walsh, C., Daley, C., Facchini, S. & Juhász, A. CO emission tracing a warp or radial flow within 100 au in the HD 100546 protoplanetary disk. Astron. Astrophys. 607, A114 (2017).

    Article  ADS  Google Scholar 

  37. Bruderer, S., van Dishoeck, E. F., Doty, S. D. & Herczeg, G. J. The warm gas atmosphere of the HD 100546 disk seen by Herschel. Evidence of a gas-rich, carbon-poor atmosphere? Astron. Astrophys. 541, A91 (2012).

    Article  Google Scholar 

  38. Bruderer, S. Survival of molecular gas in cavities of transition disks. I. CO. Astron. Astrophys. 559, A46 (2013).

    Article  ADS  Google Scholar 

  39. Kama, M. et al. Volatile-carbon locking and release in protoplanetary disks. A study of TW Hya and HD 100546. Astron. Astrophys. 592, A83 (2016).

    Article  Google Scholar 

  40. Pineda, J. E. et al. High-resolution ALMA observations of HD 100546: asymmetric circumstellar ring and circumplanetary disk upper limits. Astrophys. J. 871, 48 (2019).

    Article  ADS  Google Scholar 

  41. Wichittanakom, C. et al. The accretion rates and mechanisms of Herbig Ae/Be stars. Mon. Not. R. Astron. Soc. 493, 234–249 (2020).

    Article  ADS  Google Scholar 

  42. Pirovano, L. M. et al. H2O distribution in the disc of HD 100546 and HD 163296: the role of dust dynamics and planet–disc interaction. Astron. Astrophys. 665, A45 (2022).

    Article  Google Scholar 

  43. van Dishoeck, E. F. et al. Water in star-forming regions: physics and chemistry from clouds to disks as probed by Herschel spectroscopy. Astron. Astrophys. 648, A24 (2021).

    Article  Google Scholar 

  44. Francis, L. & van der Marel, N. Dust-depleted inner disks in a large sample of transition disks through long-baseline ALMA observations. Astrophys. J. 892, 111 (2020).

    Article  ADS  Google Scholar 

  45. Lovelace, R. V. E., Li, H., Colgate, S. A. & Nelson, A. F. Rossby wave instability of Keplerian accretion disks. Astrophys. J. 513, 805–810 (1999).

    Article  ADS  Google Scholar 

  46. Law, C. J. et al. Molecules with ALMA at planet-forming scales (MAPS). III. Characteristics of radial chemical substructures. Astrophys. J. Suppl. Ser. 257, 3 (2021).

    Article  ADS  Google Scholar 

  47. Zhang, K. et al. Molecules with ALMA at planet-forming scales (MAPS). V. CO gas distributions. Astrophys. J. Suppl. Ser. 257, 5 (2021).

    Article  ADS  Google Scholar 

  48. Guzmán, V. V. et al. Molecules with ALMA at planet-forming scales (MAPS). VI. Distribution of the small organics HCN, C2H, and H2CO. Astrophys. J. Suppl. Ser. 257, 6 (2021).

    Article  ADS  Google Scholar 

  49. Alarcón, F. et al. Molecules with ALMA at planet-forming scales (MAPS). VIII. CO gap in AS 209—gas depletion or chemical processing? Astrophys. J. Suppl. Ser. 257, 8 (2021).

    Article  ADS  Google Scholar 

  50. Ilee, J. D. et al. Molecules with ALMA at planet-forming scales (MAPS). IX. Distribution and properties of the large organic molecules HC3N, CH3CN, and c-C3H2. Astrophys. J. Suppl. Ser. 257, 9 (2021).

    Article  ADS  Google Scholar 

  51. van der Marel, N., Booth, A. S., Leemker, M., van Dishoeck, E. F. & Ohashi, S. A major asymmetric ice trap in a planet-forming disk. I. Formaldehyde and methanol. Astron. Astrophys. 651, L5 (2021).

    Article  ADS  Google Scholar 

  52. Panic, O. et al. Observations of warm molecular gas and kinematics in the disc around HD 100546. Astron. Astrophys. 519, A110 (2010).

    Article  Google Scholar 

  53. Miley, J. M. et al. Asymmetric mid-plane gas in ALMA images of HD 100546. Mon. Not. R. Astron. Soc. 485, 739–752 (2019).

    Article  ADS  Google Scholar 

  54. Fedele, D., Bruderer, S., van den Ancker, M. E. & Pascucci, I. On the asymmetry of the OH ro-vibrational lines in HD 100546. Astrophys. J. 800, 23 (2015).

    Article  ADS  Google Scholar 

  55. Nealon, R., Pinte, C., Alexander, R., Mentiplay, D. & Dipierro, G. Scattered light shadows in warped protoplanetary discs. Mon. Not. R. Astron. Soc. 484, 4951–4962 (2019).

    Article  ADS  Google Scholar 

  56. Young, A. K. et al. Chemical signatures of a warped protoplanetary disc. Mon. Not. R. Astron. Soc. 505, 4821–4837 (2021).

    Article  ADS  Google Scholar 

  57. Garufi, A. et al. The SPHERE view of the planet-forming disk around HD 100546. Astron. Astrophys. 588, A8 (2016).

    Article  Google Scholar 

  58. Follette, K. B. et al. Complex spiral structure in the HD 100546 transitional disk as revealed by GPI and MagAO. Astron. J. 153, 264 (2017).

    Article  ADS  Google Scholar 

  59. Lazareff, B. et al. Structure of Herbig AeBe disks at the milliarcsecond scale. Astron. Astrophys. 599, A85 (2017).

    Article  Google Scholar 

  60. Bohn, A. J. et al. Probing inner and outer disk misalignments in transition disks. Constraints from VLTI/GRAVITY and ALMA observations. Astron. Astrophys. 658, A183 (2022).

    Article  Google Scholar 

  61. Brittain, S. D., Najita, J. R. & Carr, J. S. High-resolution near-infrared spectroscopy of HD 100546. IV. Orbiting companion disappears on schedule. Astrophys. J. 883, 37 (2019).

    Article  ADS  Google Scholar 

  62. Sissa, E. et al. High-contrast study of the candidate planets and protoplanetary disk around HD 100546. Astron. Astrophys. 619, A160 (2018).

    Article  Google Scholar 

  63. Pérez, S. et al. Long baseline observations of the HD 100546 protoplanetary disk with ALMA. Astrophys. J. 889, L24 (2020).

    Article  ADS  Google Scholar 

  64. Zhu, Z., Stone, J. M., Rafikov, R. R. & Bai, X. Particle concentration at the planet induced gap edges and vortices I. Iinviscid three dimensional hydro disks. Astrophys. J. 785, 122 (2014).

    Article  ADS  Google Scholar 

  65. Norfolk, B. et al. The origin of the Doppler-flip in HD 100546: a large scale spiral arm generated by an inner binary companion. Astrophys. J. Lett. 936, L4 (2022).

    Article  ADS  Google Scholar 

  66. Wright, C. M. et al. Resolving structure of the disc around HD100546 at 7 mm with ATCA. Mon. Not. R. Astron. Soc. 453, 414–438 (2015).

    Article  ADS  Google Scholar 

  67. Mendigutía, I. et al. The protoplanetary system HD 100546 in Hα polarized light from SPHERE/ZIMPOL. A bar-like structure across the disk gap? Astron. Astrophys. 608, A104 (2017).

    Article  Google Scholar 

  68. Debes, J. H. et al. Chasing shadows: rotation of the azimuthal asymmetry in the TW Hya disk. Astrophys. J. 835, 205 (2017).

    Article  ADS  Google Scholar 

  69. Loomis, R. A. et al. Detecting weak spectral lines in interferometric data through matched filtering. Astron. J. 155, 182 (2018).

    Article  ADS  Google Scholar 

  70. Carney, M. T. et al. Increased H2CO production in the outer disk around HD 163296. Astron. Astrophys. 605, A21 (2017).

    Article  Google Scholar 

  71. Booth, A. S. et al. Sulphur monoxide exposes a potential molecular disk wind from the planet-hosting disk around HD 100546. Astron. Astrophys. 611, A16 (2018).

    Article  Google Scholar 

  72. Gaia Collaboration Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

    Article  Google Scholar 

  73. Pickles, A. J. A stellar spectral flux library: 1150–25000 Å. Publ. Astron. Soc. Aust. 110, 863–878 (1998).

    Article  ADS  Google Scholar 

  74. Woodall, J., Agúndez, M., Markwick-Kemper, A. J. & Millar, T. J. The UMIST database for astrochemistry 2006. Astron. Astrophys. 466, 1197–1204 (2007).

    Article  ADS  Google Scholar 

  75. Cleeves, L. I., Bergin, E. A. & Harries, T. J. Indirect detection of forming protoplanets via chemical asymmetries in disks. Astrophys. J. 807, 2 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge D. Fedele for sharing the ALMA 870 μm continuum data. L.K. acknowledges funding via a Science and Technology Facilities Council (STFC) studentship. E.F.v.D. is supported by A-ERC grant agreement no. 101019751 MOLDISK. M.N.D. acknowledges the Swiss National Science Foundation (SNSF) Ambizione grant no. 180079, the Center for Space and Habitability (CSH) Fellowship, and the IAU Gruber Foundation Fellowship. C.W. acknowledges financial support from the University of Leeds, the Science and Technology Facilities Council, and UK Research and Innovation (grant numbers ST/T000287/1 and MR/T040726/1).

Author information

Authors and Affiliations

Authors

Contributions

L.K. reduced the ACA CS data, ran the chemical models, performed analysis of both the data and models, and wrote the manuscript. M.K. contributed to the analysis of both the data and models, original research concepts and writing of the manuscript, and led the proposal for the ACA data. A.S.B. provided the ALMA SO data and contributed to the writing of the manuscript. E.A.B., L.I.C., E.F.v.D., M.N.D., K.F., J.R., O.S. and C.W. contributed to the writing of the manuscript.

Corresponding author

Correspondence to Luke Keyte.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Zhaohuan Zhu, Rebecca Nealon and Alison Young for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Abundance maps and contribution functions for the modelled CS and SO emission in HD 100546.

Each panel shows an abundance map overlaid with contours representing 25% and 75% line emission (white). Top row: CS 7-6 emission from the C/O=0.5 region (left) and C/O>1 region (right). Bottom row: SO 77 − 66 + 78 − 67 emission from the C/O=0.5 region (left) and C/O>1 region (right).

Extended Data Fig. 2 Effect of varying the high-C/O wedge size and position on the modelled spectra.

Top row: SO 77 − 66 + 78 − 67 (left) and CS 7-6 (right) spectra for variations in wedge size (θ), centered on position ϕ = 0. Bottom panel: SO 77 − 66 + 78 − 67 (left and CS 7-6 (right) spectra for variations in wedge position (ϕ), for a fixed angular size θ = 60.

Extended Data Fig. 3 Temperature and density maps for the baseline HD 100546 disk model (C/O=0.5).

Top left: Gas number density. Bottom left: Dust number density. Top right: Gas temperature. Bottom right: Dust temperature.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Tables 1–4 and Discussions 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keyte, L., Kama, M., Booth, A.S. et al. Azimuthal C/O variations in a planet-forming disk. Nat Astron 7, 684–693 (2023). https://doi.org/10.1038/s41550-023-01951-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-01951-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing