Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A subsolar oxygen abundance or a radiative region deep in Jupiter revealed by thermochemical modelling

Abstract

Jupiter’s deep abundances help to constrain the formation history of the planet and the environment of the protoplanetary nebula. Juno recently measured Jupiter’s deep oxygen abundance near the equator to be \(2.2_{ - 2.1}^{ + 3.9}\) times the protosolar value (2σ uncertainties). Even if the nominal value is supersolar, subsolar abundances cannot be ruled out. Here we use a state-of-the-art one-dimensional thermochemical and diffusion model with updated chemistry to constrain the deep oxygen abundance with upper tropospheric CO observations. We find a value of \(0.3_{ - 0.2}^{ + 0.5}\) times the protosolar value. This result suggests that Jupiter could have a carbon-rich envelope that accreted in a region where the protosolar nebula was depleted in water. However, our model can also reproduce a solar/supersolar water abundance if vertical mixing is reduced in a radiative layer where the deep oxygen abundance is obtained. More precise measurements of the deep water abundance are needed to discriminate between these two scenarios and understand Jupiter’s internal structure and evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Abundances and temperature profiles for Jupiter.
Fig. 2: Kzz and oxygen dependence of Jupiter’s upper tropospheric CO mole fraction.
Fig. 3: Carbon and oxygen dependence of Jupiter’s upper tropospheric CO mole fraction.

Similar content being viewed by others

Data availability

Data that support the findings of this study are available upon request from the corresponding author.

Code availability

Software used in this study is available upon reasonable request from the corresponding author.

References

  1. Helled, R. & Lunine, J. Measuring Jupiter’s water abundance by Juno: the link between interior and formation models. Mon. Not. R. Astron. Soc. 441, 2273–2279 (2014).

    Article  ADS  Google Scholar 

  2. Bar-Nun, A., Kleinfeld, I. & Kochavi, E. Trapping of gas mixtures by amorphous water ice. Phys. Rev. B 38, 7749–7754 (1988).

    Article  ADS  Google Scholar 

  3. Wong, M. H., Mahaffy, P. R., Atreya, S. K., Niemann, H. B. & Owen, T. C. Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter. Icarus 171, 153–170 (2004).

    Article  ADS  Google Scholar 

  4. Janssen, M. A. et al. Microwave remote sensing of Jupiter’s atmosphere from an orbiting spacecraft. Icarus 173, 447–453 (2005).

    Article  ADS  Google Scholar 

  5. de Pater, I. Jupiter’s zone-belt structure at radio wavelengths. II. Comparison of observations with model atmosphere calculations. Icarus 68, 344–3645 (1986).

    Article  ADS  Google Scholar 

  6. Li, C. et al. The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data. Geophys. Res. Lett. 44, 5317–5325 (2017).

    Article  ADS  Google Scholar 

  7. Li, C. et al. The water abundance in Jupiter’s equatorial zone. Nat. Astron. 4, 609–616 (2020).

    Article  ADS  Google Scholar 

  8. Helled, R. et al. Revelations on Jupiter’s formation, evolution and interior: challenges from Juno results. Icarus 378, 114937 (2022).

    Article  Google Scholar 

  9. Lodders, K. Relative atomic solar system abundances, mass fractions, and atomic masses of the elements and their isotopes, composition of the solar photosphere, and compositions of the major chondritic meteorite groups. Space Sci. Rev. 217, 44 (2021).

    Article  ADS  Google Scholar 

  10. Beer, R. Detection of carbon monoxide in Jupiter. Astrophys. J. 200, L167–L169 (1975).

    Article  ADS  Google Scholar 

  11. Lunine, J. I. & Hunten, D. M. Moist convection and the abundance of water in the troposphere of Jupiter. Icarus 69, 566–570 (1987).

    Article  ADS  Google Scholar 

  12. Fegley, B. & Prinn, G. P. Chemical constraints on the water and total oxygen abundances in the deep atmosphere of Jupiter. Astrophys. J. 324, 621–625 (1988).

    Article  ADS  Google Scholar 

  13. Yung, Y. L., Drew, W. A., Pinto, J. P. & Friedl, R. R. Estimation of the reaction rate for for the formation of CH3OH from H + H2CO: implications for chemistry in the Solar System. Icarus 73, 516–526 (1988).

    Article  ADS  Google Scholar 

  14. Visscher, C., Moses, J. I. & Saslow, S. A. Deep water abundance on Jupiter: new constraints from thermochemical kinetics and diffusion modeling. Icarus 209, 602–615 (2010).

    Article  ADS  Google Scholar 

  15. Wang, D., Lunine, J. I. & Mousis, O. Modeling the disequilibrium species for Jupiter and Saturn: implications for Juno and Saturn entry probe. Icarus 276, 21–38 (2016).

    Article  ADS  Google Scholar 

  16. Cavalié, T. et al. Thermochemistry and vertical mixing in the tropospheres of Uranus and Neptune: how convection inhibition can affect the derivation of deep oxygen abundances. Icarus 291, 1–16 (2017).

    Article  ADS  Google Scholar 

  17. Bézard, B., Lellouch, E., Strobel, D., Maillard, J.-P. & Drossart, P. Carbon monoxide on Jupiter: evidence for both internal and external sources. Icarus 159, 95–111 (2002).

  18. Bjoraker, G. L. et al. The gas composition and deep cloud structure of Jupiter’s Great Red Spot. Astron. J. 156, 101 (2018).

  19. Moses, J. I. Chemical kinetics on extrasolar planets. Phil. Trans. R. Soc. A 372, 20130073 (2014).

    Article  ADS  Google Scholar 

  20. Hidaka, Y., Oki, T., Kawano, H. & Higashihara, T. Thermal decomposition of methanol in shock waves. J. Phys. Chem. 93, 7134–7139 (1989).

    Article  Google Scholar 

  21. Venot, O. et al. New chemical scheme for giant planet thermochemistry. Update of the methanol chemistry and new reduced chemical scheme. Astron. Astrophys. 634, A78 (2020).

    Article  Google Scholar 

  22. Burke, U. et al. A detailed chemical kinetic modeling, ignition delay time and jet-stirred reactor study of methanol oxidation. Combust. Flame 165, 125–136 (2016).

    Article  ADS  Google Scholar 

  23. Venot, O. et al. A chemical model for the atmosphere of hot Jupiters. Astron. Astrophys. 546, A43 (2012).

    Article  Google Scholar 

  24. Wang, D., Gierasch, P. J., Lunine, J. I. & Mousis, O. New insights on Jupiter’s deep water abundance from disequilibrium species. Icarus 250, 154–164 (2015).

    Article  ADS  Google Scholar 

  25. Grassi, D. et al. On the spatial distribution of minor species in Jupiter’s troposphere as inferred from Juno JIRAM data. J. Geophys. Res. Planets 125, e2019JE006206 (2020).

    Article  ADS  Google Scholar 

  26. Owen, T. et al. A low-temperature origin for the planetesimals that formed Jupiter. Nature 402, 269–270 (1999).

    Article  ADS  Google Scholar 

  27. Gautier, D., Hersant, F., Mousis, O. & Lunine, J. I. Enrichments in volatitles in Jupiter: a new interpretation of the Galileo measurements. Astrophys. J. 550, L227–L230 (2001).

    Article  ADS  Google Scholar 

  28. Guillot, T. et al. Storms and the depletion of ammonia in Jupiter: II. Explaining the Juno observations. J. Geophys. Res. Planets 125, e2020JE006404 (2020).

    Article  ADS  Google Scholar 

  29. Iñurrigarro, P., Hueso, R., Sánchez-Lavega, A. & Legarreta, J. Convective storms in closed cyclones in Jupiter: (II) numerical modeling. Icarus 386, 115169 (2022).

    Article  Google Scholar 

  30. Hueso, R. & Sánchez-Lavega, A. A three-dimensional model of moist convection for the giant planets: the Jupiter case. Icarus 151, 257–274 (2001).

  31. Aglyamov, Y. S. et al. Lightning generation in moist convective clouds and constraints on the water abundance in Jupiter. J. Geophys. Res. Planets 126, e2020JE006504 (2021).

  32. Dyudina, U. A. et al. Monte Carlo radiative transfer modeling of lightning observed in Galileo images of Jupiter. Icarus 160, 336–349 (2002).

    Article  ADS  Google Scholar 

  33. Ali-Dib, M., Mousis, O., Petit, J.-M. & Lunine, J. I. Measured compositions of Uranus and Neptune from their formation on the CO iceline. Astrophys. J. 793, 9 (2014).

    Article  ADS  Google Scholar 

  34. Mousis, O., Lunine, J. I., Mdhusudhan, N. & Johnson, T. V. Nebular water depletion as the cause of Jupiter’s low oxygen abundance. Astrophys. J. 751, L7 (2012).

    Article  ADS  Google Scholar 

  35. Lodders, K. Jupiter formed with more tar than ice. Astrophys. J. 11, 587–597 (2004).

    Article  ADS  Google Scholar 

  36. Mousis, O., Ronnet, T. & Lunine, J. I. Jupiter’s formation in the vicinity of the amorphous ice snowline. Astrophys. J. 875, 9 (2019).

    Article  ADS  Google Scholar 

  37. Mousis, O. et al. Cold traps of hypervolatiles in the protosolar nebula at the origin of the peculiar composition of comet C/2016 R2 (PanSTARRS). Planet. Sci. J. 2, 72 (2021).

    Article  Google Scholar 

  38. Mousis, O., Lunine, J. I. & Aguichine, A. The nature and composition of Jupiter’s building blocks derived from the water abundance measurements by the Juno spacecraft. Astrophys. J. 918, L23 (2021).

    Article  ADS  Google Scholar 

  39. Schneider, A. D. & Bitsch, B. How drifting and evaporating pebbles shape giant planets. II. Volatiles and refractories in atmospheres. Astron. Astrophys. 654, A72 (2021).

    Article  ADS  Google Scholar 

  40. Guillot, T., Gautier, D., Chabrier, G. & Mosser, B. Are the giant planets fully convective? Icarus 112, 337–353 (1994).

    Article  ADS  Google Scholar 

  41. Guillot, T., Stevenson, D. J., Hubbard, W. B. & Saumon, D. in Jupiter: The Planet, Satellites and Magnetosphere (eds Bagenal, F. et al.) 35–57 (Cambridge Univ. Press, 2004).

  42. Bhattacharya, A. et al. Alkali metals in deep atmosphere of Jupiter. Bull. Am. Astron. Soc. 53, 2021n7i212p01 (2021).

    Google Scholar 

  43. Mousis, O. et al. Scientific rationale for Saturn’s in situ exploration. Planet. Space Sci. 104, 29–47 (2014).

    Article  ADS  Google Scholar 

  44. Mousis, O. et al. Scientific rationale for Uranus and Neptune in situ explorations. Planet. Space Sci. 155, 12–40 (2018).

    Article  ADS  Google Scholar 

  45. Cavalié, T. et al. The deep composition of Uranus and Neptune from in situ exploration and thermochemical modeling. Space Sci. Rev. 216, 58 (2020).

    Article  ADS  Google Scholar 

  46. Cavalié, T. et al. The first submillimeter observation of CO in the stratosphere of Uranus. Astron. Astrophys. 562, A33 (2014).

    Article  Google Scholar 

  47. von Zahn, U., Hunten, D. M. & Lehmacher, G. Helium in Jupiter’s atmosphere: results from the Galileo probe Helium interferometer experiment. J. Geophys. Res. 103, 22815–22829 (1998).

    Article  ADS  Google Scholar 

  48. Guillot, T., Stevenson, D. J., Atreya, S. K., Bolton, S. J. & Becker, H. N. Storms and the depletion of ammonia in Jupiter: I. The microphysics of “mushballs”. J. Geophys. Res. Planets 125, e2020JE006403 (2020).

    Article  ADS  Google Scholar 

  49. Seiff, A. et al. Thermal structure of Jupiter’s atmosphere near the edge of a 5-µm hot spot in the north equatorial belt. J. Geophys. Res. 103, 22857–22889 (1998).

    Article  ADS  Google Scholar 

  50. Dobrijevic, M. et al. Key reactions in the photochemistry of hydrocarbons in Neptune’s stratosphere. Planet. Space Sci. 58, 1555–1566 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

T.C. acknowledges funding from CNES and the Programme National de Planétologie (PNP) of CNRS/INSU. J.L. acknowledges support from the Juno mission through a subcontract from the Southwest Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

T.C. performed the modelling and data analysis. T.C., J.L. and O.M. discussed the results and commented on the manuscript.

Corresponding author

Correspondence to T. Cavalié.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Gordon Bjoraker, Tristan Guillot and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 CO vertical profile in Jupiter computed in the same conditions as in15 with our chemical scheme, that is, that of21 with revised methanol chemistry kinetics.

The profile is obtained for Kzz = 109 cm.2s−1 and seven times solar oxygen. It is in full agreement with those obtained with other chemical schemes and shown in Figure 17 of15, which are indicated by the grey area.

Extended Data Fig. 2 Kzz profiles used in this work.

The black profile is our nominal model (where Kzz = 108 cm.2s,−1 constant with altitude) which results in an oxygen abundance of 0.3 times the protosolar value. The blue profile (Kzz=2.5 × 106 cm.2s,−1 constant with altitude) results constrains oxygen to 2.2 times the protosolar value, that is, the Juno MWR nominal measurement of7. An intermediate constant value of 2.5 × 107 cm.2s−1 (purple line) will produce the observed CO with nearly solar oxygen. The red profile (variable with altitude) indicates the presence of a stable radiative layer at depth with a transition region such that Kzz reaches our nominal value at the levels where PH3 and GeH4 are quenched.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalié, T., Lunine, J. & Mousis, O. A subsolar oxygen abundance or a radiative region deep in Jupiter revealed by thermochemical modelling. Nat Astron 7, 678–683 (2023). https://doi.org/10.1038/s41550-023-01928-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-01928-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing