Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An assessment of the association between a fast radio burst and binary neutron star merger

Abstract

Fast radio bursts (FRBs) are bright millisecond-duration radio bursts at cosmological distances. While young magnetars are the leading source candidate, recent observations suggest that there may be multiple FRB progenitor classes. Here we investigate a potential coincidence between a binary neutron star merger event, GW190425, and a bright, non-repeating FRB event, FRB 20190425A. The FRB is located within the gravitational wave sky localization area, occurred 2.5 h after the gravitational wave event and has a dispersion measure consistent with the distance inferred from gravitational wave parameter estimation. The chance probability of a coincidence between unrelated FRB and gravitational wave events in the searched databases is estimated to be 0.0052 (2.8σ). This potential association is consistent with the theory that the binary neutron star merger left behind a supramassive, highly magnetized compact object, which collapsed to form a black hole after losing angular momentum due to spindown and produced an FRB by ejecting the magnetosphere. If such a physical association is established, the equation of state of the post-merger compact object is likely to be stiff with a Tolman–Oppenheimer–Volkoff non-spinning maximum mass of \(>2.6{3}_{-0.23}^{+0.39}\,{\mathrm{solar}}\,{\mathrm{masses}}\) (\(>2.3{1}_{-0.08}^{+0.24}\,{\mathrm{solar}}\,{\mathrm{masses}}\)) for a neutron (quark) star remnant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Temporal and spatial coincidence of GW190425 and FRB 20190425A.
Fig. 2: The expected DM distribution inferred from GW190425 compared with non-repeating CHIME FRBs.
Fig. 3: Potential host association for GW190425–FRB 20190425A.
Fig. 4: Constraints on MTOV for neutron and quark stars.

Similar content being viewed by others

Data availability

Processed data are presented in Figs. 14, Extended Data Figs. 13, Extended Data Table 1 and Supplementary Table 1. The CHIME FRB data are publicly available at https://www.chime-frb.ca/catalog. The public GW event data are available at https://gracedb.ligo.org/superevents/public/O3/ (general information); https://dcc.ligo.org/LIGO-T1900685/public (strain data); https://dcc.ligo.org/LIGO-P2000223/public (GWTC-2 parameter estimation); and https://www.gw-openscience.org/eventapi/html/GWTC-2/GW190425/v2 (GWOSC event portal).

Code availability

Custom code is available via GitHub at https://github.com/FRBs/zdm. Additional code used for processing data is available upon reasonable request from the corresponding authors.

References

  1. Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J. & Crawford, F. A bright millisecond radio burst of extragalactic origin. Science 318, 777–780 (2007).

    Article  ADS  Google Scholar 

  2. Pleunis, Z. et al. LOFAR detection of 110-188 MHz emission and frequency-dependent activity from FRB 20180916B. Astrophys. J. Lett. 911, L3 (2020).

    Article  ADS  Google Scholar 

  3. Gajjar, V. et al. Highest frequency detection of FRB 121102 at 4-8 GHz using the breakthrough listen digital backend at the Green Bank Telescope. Astrophys. J. 863, 2 (2018).

    Article  ADS  Google Scholar 

  4. Amiri, M., Anderson, B. C. & Bandura, K. et al. The first CHIME/FRB fast radio burst catalog. Astrophys. J. 257, 59 (2021).

    Article  Google Scholar 

  5. Ravi, V. The prevalence of repeating fast radio bursts. Nat. Astron. 3, 928–931 (2019).

    Article  ADS  Google Scholar 

  6. Luo, R. et al. On the FRB luminosity function—II. Event rate density. Mon. Not. R. Astron. Soc. 494, 665–679 (2020).

    Article  ADS  Google Scholar 

  7. Spitler, L. G. et al. A repeating fast radio burst. Nature 531, 202–205 (2016).

    Article  ADS  Google Scholar 

  8. Michilli, D. et al. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102. Nature 553, 182–185 (2018).

    Article  ADS  Google Scholar 

  9. Anderson, B., Bandura, K. & Bhardwaj, M. et al. A bright millisecond-duration radio burst from a Galactic magnetar. Nature 587, 54–58 (2020).

    Article  ADS  Google Scholar 

  10. Bochenek, C. D. et al. A fast radio burst associated with a Galactic magnetar. Nature 587, 59–62 (2020).

    Article  ADS  Google Scholar 

  11. Li, C. K. et al. HXMT identification of a non-thermal X-ray burst from SGR J1935+2154 and with FRB 200428. Nat. Astron. 5, 378–384 (2021).

    Article  ADS  Google Scholar 

  12. Mereghetti, S. et al. INTEGRAL discovery of a burst with associated radio emission from the magnetar SGR 1935+2154. Astrophys. J. Lett. 898, L29 (2020).

    Article  ADS  Google Scholar 

  13. Kirsten, F. et al. A repeating fast radio burst source in a globular cluster. Nature 602, 585–589 (2022).

    Article  ADS  Google Scholar 

  14. James, C. W. et al. Which bright fast radio bursts repeat? Mon. Not. R. Astron. Soc. 495, 2416–2427 (2020).

    Article  ADS  Google Scholar 

  15. Platts, E. et al. A living theory catalogue for fast radio bursts. Phys. Rep. 821, 1–27 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  16. Piro, A. L. Magnetic interactions in coalescing neutron star binaries. Astrophys. J. 755, 80 (2012).

    Article  ADS  Google Scholar 

  17. Zhang, B. Fast radio bursts from interacting binary neutron star systems. Astrophys. J. 890, L24 (2020).

    Article  ADS  Google Scholar 

  18. Totani, T. Cosmological fast radio bursts from binary neutron star mergers. Publ. Astron. Soc. Jpn 65, L12 (2013).

    Article  ADS  Google Scholar 

  19. Zhang, B. A possible connection between fast radio bursts and gamma-ray bursts. Astrophys. J. 780, L21 (2013).

    Article  ADS  Google Scholar 

  20. Abbott, R. et al. GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Phys. Rev. X 11, 021053 (2021).

    Google Scholar 

  21. Aasi, J. et al. Advanced LIGO. Class. Quant. Grav. 32, 074001 (2015).

    Article  ADS  Google Scholar 

  22. Acernese, F. et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quant. Grav. 32, 024001 (2014).

    Article  ADS  Google Scholar 

  23. Abbott, B. P. et al. Prospects for observing and localizing gravitational-wave transients with advanced LIGO, advanced Virgo and KAGRA. Living Rev. Relativ. 23, 3 (2020).

    Article  ADS  Google Scholar 

  24. Abbott, B. P. et al. GW190425: observation of a compact binary coalescence with total mass ~ 3.4 M. Astrophys. J. 892, L3 (2020).

    Article  ADS  Google Scholar 

  25. Macquart, J. P. et al. A census of baryons in the Universe from localized fast radio bursts. Nature 581, 391–395 (2020).

    Article  ADS  Google Scholar 

  26. Josephy, A. et al. No evidence for galactic latitude dependence of the fast radio burst sky distribution. Astrophys. J. 923, 2 (2021).

    Article  ADS  Google Scholar 

  27. Rafiei-Ravandi, M. et al. CHIME/FRB catalog 1 results: statistical cross-correlations with large-scale structure. Astrophys. J. 922, 42 (2021).

    Article  ADS  Google Scholar 

  28. Gehrels, N. et al. Galaxy strategy for LIGO-Virgo gravitational wave counterpart searches. Astrophys. J. 820, 136 (2016).

    Article  ADS  Google Scholar 

  29. Nakar, E. & Piran, T. Detectable radio flares following gravitational waves from mergers of binary neutron stars. Nature 478, 82–84 (2011).

    Article  ADS  Google Scholar 

  30. Gao, H., Ding, X., Wu, X.-F., Zhang, B. & Dai, Z.-G. Bright broadband afterglows of gravitational wave bursts from mergers of binary neutron stars. Astrophys. J. 771, 86 (2013).

    Article  ADS  Google Scholar 

  31. Falcke, H. & Rezzolla, L. Fast radio bursts: the last sign of supramassive neutron stars. Astron. Astrophys. 562, A137 (2014).

    Article  ADS  Google Scholar 

  32. Most, E. R., Nathanail, A. & Rezzolla, L. Electromagnetic emission from blitzars and its impact on non-repeating fast radio bursts. Astrophys. J. 864, 117 (2018).

    Article  ADS  Google Scholar 

  33. Abbott, B. P. et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. 848, L13 (2017).

    Article  ADS  Google Scholar 

  34. Zhang, B. B. et al. A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor. Nat. Commun. 9, 447 (2018).

    Article  ADS  Google Scholar 

  35. Savchenko, V. et al. LIGO/Virgo S190425z: further analysis of INTEGRAL data. GRB Coord. Netw. Circ. No. 24178 (2019).

  36. Pozanenko, A. S., Minaev, P. Y., Grebenev, S. A. & Chelovekov, I. V. Observation of the second LIGO/Virgo event connected with a binary neutron star merger s190425z in the gamma-ray range. Astron. Lett. 45, 710–727 (2019).

    Article  ADS  Google Scholar 

  37. Oppenheimer, J. R. & Volkoff, G. M. On massive neutron cores. Phys. Rev. 55, 374–381 (1939).

    Article  ADS  MATH  Google Scholar 

  38. Breu, C. & Rezzolla, L. Maximum mass, moment of inertia and compactness of relativistic stars. Mon. Not. R. Astron. Soc. 459, 646–656 (2016).

    Article  ADS  Google Scholar 

  39. Ai, S., Gao, H. & Zhang, B. What constraints on the neutron star maximum mass can one pose from GW170817 observations? Astrophys. J. 893, 146 (2020).

    Article  ADS  Google Scholar 

  40. Li, A., Miao, Z., Han, S. & Zhang, B. Constraints on the maximum mass of neutron stars with a quark core from GW170817 and NICER PSR J0030+0451 data. Astrophys. J. 913, 27 (2021).

    Article  ADS  Google Scholar 

  41. Miller, M. C. et al. The radius of PSR J0740+6620 from NICER and XMM-Newton data. Astrophys. J. Lett. 918, L28 (2021).

    Article  ADS  Google Scholar 

  42. Li, A., Miao, Z. Q., Jiang, J. L., Tang, S. P. & Xu, R. X. Bayesian inference of quark star equation of state using the NICER PSR J0030+0451 data. Mon. Not. R. Astron. Soc. 506, 5916–5922 (2021).

    Article  ADS  Google Scholar 

  43. Cook, G. B., Shapiro, S. L. & Teukolsky, S. A. Rapidly rotating neutron stars in general relativity: realistic equations of state. Astrophys. J. 424, 823 (1994).

    Article  ADS  Google Scholar 

  44. Dai, Z. G. & Lu, T. γ-Ray bursts and afterglows from rotating strange stars and neutron stars. Phys. Rev. Lett. 81, 4301–4304 (1998).

    Article  ADS  Google Scholar 

  45. Drago, A., Lavagno, A., Metzger, B. D. & Pagliara, G. Quark deconfinement and the duration of short gamma-ray bursts. Phys. Rev. D 93, 103001 (2016).

    Article  ADS  Google Scholar 

  46. Li, A. et al. Internal X-ray plateau in short GRBs: signature of supramassive fast-rotating quark stars? Phys. Rev. D 94, 083010 (2016).

    Article  ADS  Google Scholar 

  47. Piro, L. et al. A long-lived neutron star merger remnant in GW170817: constraints and clues from X-ray observations. Mon. Not. R. Astron. Soc. 483, 1912–1921 (2019).

    Article  ADS  Google Scholar 

  48. Troja, E. et al. Accurate flux calibration of GW170817: is the X-ray counterpart on the rise? Mon. Not. R. Astron. Soc. 510, 1902–1909 (2022).

    Article  ADS  Google Scholar 

  49. Bhardwaj, M. et al. A nearby repeating fast radio burst in the direction of M81. Astrophys. J. Lett. 910, L18 (2021).

    Article  ADS  Google Scholar 

  50. Wang, J.-S., Yang, Y.-P., Wu, X.-F., Dai, Z.-G. & Wang, F.-Y. Fast radio bursts from the inspiral of double neutron stars. Astrophys. J. 822, L7 (2016).

    Article  ADS  Google Scholar 

  51. Zhang, G. Q., Yi, S. X. & Wang, F. Y. The rarity of repeating fast radio bursts from binary neutron star mergers. Astrophys. J. 893, 44 (2020).

    Article  ADS  Google Scholar 

  52. Zhang, B. Mergers of charged black holes: gravitational-wave events, short gamma-ray bursts, and fast radio bursts. Astrophys. J. 827, L31 (2016).

    Article  ADS  Google Scholar 

  53. Wen, L. & Chen, Y. Geometrical expression for the angular resolution of a network of gravitational-wave detectors. Phys. Rev. D 81, 012038 (2010).

    Article  Google Scholar 

  54. Fairhurst, S. Triangulation of gravitational wave sources with a network of detectors. New J. Phys. 13, 069602 (2011).

    Article  ADS  Google Scholar 

  55. Klimenko, S. et al. Localization of gravitational wave sources with networks of advanced detectors. Phys. Rev. D 83, 102001 (2011).

    Article  ADS  Google Scholar 

  56. Pankow, C., Chase, E. A., Coughlin, S., Zevin, M. & Kalogera, V. Improvements in gravitational-wave sky localization with expanded networks of interferometers. Astrophys. J. 854, L25 (2018).

    Article  ADS  Google Scholar 

  57. Singer, L. P. & Price, L. R. Rapid Bayesian position reconstruction for gravitational-wave transients. Phys. Rev. D 93, 024013 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  58. Singer, L. ligo.skymap. LIGO GITLab https://git.ligo.org/lscsoft/ligo.skymap (2023).

  59. The Chime/FRB Collaboration. Periodic activity from a fast radio burst source. Nature 582, 351–355 (2020).

    Article  ADS  Google Scholar 

  60. Rajwade, K. M. et al. Possible periodic activity in the repeating FRB 121102. Mon. Not. R. Astron. Soc. 495, 3551–3558 (2020).

    Article  ADS  Google Scholar 

  61. The LIGO Scientific Collaboration et al. Search for gravitational waves associated with fast radio bursts detected by CHIME/FRB during the LIGO–Virgo observing run O3a. Preprint at arXiv https://doi.org/10.48550/arXiv.2203.12038 (2022).

  62. Zhang, B. Mergers of charged black holes: gravitational-wave events, short gamma-ray bursts, and fast radio bursts. Astrophys. J. Lett. 827, L31 (2016).

    Article  ADS  Google Scholar 

  63. Veitch, J. et al. Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Phys. Rev. D 91, 042003 (2015).

    Article  ADS  Google Scholar 

  64. Cordes, J. M. & Lazio, T. J. W. NE2001.I. A new model for the Galactic distribution of free electrons and its fluctuations. Preprint at arXiv https://doi.org/10.48550/arXiv.astro-ph/0207156 (2002).

  65. Yao, J. M., Manchester, R. N. & Wang, N. A new electron-density model for estimation of pulsar and FRB distances. Astrophys. J. 835, 29 (2017).

    Article  ADS  Google Scholar 

  66. Yamasaki, S. & Totani, T. The Galactic halo contribution to the dispersion measure of extragalactic fast radio bursts. Astrophys. J. 888, 105 (2020).

    Article  ADS  Google Scholar 

  67. Schnitzeler, D. H. F. M. Modelling the Galactic distribution of free electrons. Mon. Not. R. Astron. Soc. 427, 664–678 (2012).

    Article  ADS  Google Scholar 

  68. Shannon, R. M. et al. The dispersion-brightness relation for fast radio bursts from a wide-field survey. Nature 562, 386–390 (2018).

    Article  ADS  Google Scholar 

  69. Prochaska, J. X. & Zheng, Y. Probing Galactic haloes with fast radio bursts. Mon. Not. R. Astron. Soc. 485, 648–665 (2019).

    ADS  Google Scholar 

  70. Inoue, S. Probing the cosmic reionization history and local environment of gamma-ray bursts through radio dispersion. Mon. Not. R. Astron. Soc. 348, 999–1008 (2004).

    Article  ADS  Google Scholar 

  71. Aghanim, N. et al. Planck 2018 results. Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  72. Wright, E. L. A cosmology calculator for the World Wide Web. Publ. Astron. Soc. Pac. 118, 1711–1715 (2006).

    Article  ADS  Google Scholar 

  73. James, C. W. et al. The z–DM distribution of fast radio bursts. Mon. Not. R. Astron. Soc. 509, 4775–4802 (2022).

    Article  ADS  Google Scholar 

  74. Prochaska, J. X. et al. FRB. GitHub https://github.com/FRBs/FRB (2019).

  75. James, C. W., Prochaska, J. X. & Ghosh, A. M. zdm. GitHub https://github.com/FRBs/zdm (2022).

  76. Ashton, G. et al. Coincident detection significance in multimessenger astronomy. Astrophys. J. 860, 6 (2018).

    Article  ADS  Google Scholar 

  77. Nitz, A. et al. PyCBC. Github https://github.com/gwastro/pycbc (2022).

  78. Finn, L. S. Detection, measurement, and gravitational radiation. Phys. Rev. D 46, 5236–5249 (1992).

    Article  ADS  Google Scholar 

  79. Cutler, C. & Flanagan, É. E. Gravitational waves from merging compact binaries: how accurately can one extract the binary’s parameters from the inspiral waveform? Phys. Rev. D 49, 2658–2697 (1994).

    Article  ADS  Google Scholar 

  80. Gao, H. et al. Relation between gravitational mass and baryonic mass for non-rotating and rapidly rotating neutron stars. Front. Phys. 15, 24603 (2020).

    Article  ADS  Google Scholar 

  81. Rowlinson, A. et al. The unusual X-ray emission of the short Swift GRB 090515: evidence for the formation of a magnetar? Mon. Not. R. Astron. Soc. 409, 531–540 (2010).

    Article  ADS  Google Scholar 

  82. Rowlinson, A., O’Brien, P. T., Metzger, B. D., Tanvir, N. R. & Levan, A. J. Signatures of magnetar central engines in short GRB light curves. Mon. Not. R. Astron. Soc. 430, 1061–1087 (2013).

    Article  ADS  Google Scholar 

  83. Lü, H.-J., Zhang, B., Lei, W.-H., Li, Y. & Lasky, P. D. The millisecond magnetar central engine in short GRBs. Astrophys. J. 805, 89 (2015).

    Article  ADS  Google Scholar 

  84. Gao, H., Zhang, B. & Lü, H.-J. Constraints on binary neutron star merger product from short GRB observations. Phys. Rev. D 93, 044065 (2016).

    Article  ADS  Google Scholar 

  85. Timmes, F. X., Woosley, S. E. & Weaver, T. A. The neutron star and black hole initial mass function. Astrophys. J. 457, 834 (1996).

    Article  ADS  Google Scholar 

  86. Wanderman, D. & Piran, T. The rate, luminosity function and time delay of non-collapsar short GRBs. Mon. Not. R. Astron. Soc. 448, 3026–3037 (2015).

    Article  ADS  Google Scholar 

  87. Metzger, B. D. Kilonovae. Living Rev. Relativ. 20, 3 (2017).

    Article  ADS  Google Scholar 

  88. Shapiro, S. L. Differential rotation in neutron stars: magnetic braking and viscous damping. Astrophys. J. 544, 397–408 (2000).

    Article  ADS  Google Scholar 

  89. Margalit, B. & Metzger, B. D. The multi-messenger matrix: the future of neutron star merger constraints on the nuclear equation of state. Astrophys. J. Lett. 880, L15 (2019).

    Article  ADS  Google Scholar 

  90. Ravi, V. & Lasky, P. D. The birth of black holes: neutron star collapse times, gamma-ray bursts and fast radio bursts. Mon. Not. R. Astron. Soc. 441, 2433–2439 (2014).

    Article  ADS  Google Scholar 

  91. Lasky, P. D., Haskell, B., Ravi, V., Howell, E. J. & Coward, D. M. Nuclear equation of state from observations of short gamma-ray burst remnants. Phys. Rev. D 89, 047302 (2014).

    Article  ADS  Google Scholar 

  92. Gao, H., Zhang, B. & Lü, H.-J. Constraints on binary neutron star merger product from short GRB observations. Phys. Rev. D 93, 044065 (2016).

    Article  ADS  Google Scholar 

  93. The LIGO Scientific Collaboration. LIGO/Virgo S190425z: identification of a GW compact binary merger candidate. GRB Coord. Netw. Circ. No. 24168 (2019).

  94. Minaev, P., Pozanenko, A., Grebenev, S. & Chelovekov, I. LIGO/Virgo S190425z: INTEGRAL SPI-ACS prompt observation. GRB Coord. Netw. Circ. No. 24170 (2019).

  95. Savchenko, V., Neronov, A. & Courvoisier, T. J. L. Timing properties of gamma-ray bursts detected by SPI-ACS detector onboard INTEGRAL. Astron. Astrophys. 541, A122 (2012).

    Article  ADS  Google Scholar 

  96. Martin-Carrillo, A. et al. LIGO/Virgo S190426c: INTEGRAL prompt observation. GRB Coord. Netw. Circ. No. 24242 (2019).

  97. The LIGO Scientific Collaboration et al. The population of merging compact binaries inferred using gravitational waves through GWTC-3. Preprint at arXiv https://doi.org/10.48550/arXiv.2111.03634 (2021).

  98. James, C. W. et al. The fast radio burst population evolves, consistent with the star formation rate. Mon. Not. R. Astron. Soc. 510, L18–L23 (2022).

    Article  ADS  Google Scholar 

  99. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci Eng 9, 90–95 (2007).

    Article  Google Scholar 

  100. van der Walt, S., Colbert, S. Chris. & Varoquaux, Gael. The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011).

    Article  Google Scholar 

  101. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  Google Scholar 

  102. The pandas development team. pandas-dev/pandas: Pandas (v2.0.0rc0). Zenodo https://doi.org/10.5281/zenodo.7658911 (2023).

Download references

Acknowledgements

We acknowledge the custodians of the land this research was conducted on, the Whadjuk (Perth region) Noongar people, and pay our respects to elders past, present and emerging. This research has made use of data, software and/or web tools obtained from the Gravitational Wave Open Science Center (https://www.gw-openscience.org/), a service of LIGO Laboratory, the LIGO Scientific Collaboration and the Virgo Collaboration. LIGO Laboratory and Advanced LIGO are funded by the United States National Science Foundation (NSF) as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Virgo is funded, through the European Gravitational Observatory (EGO), by the French Centre National de Recherche Scientifique (CNRS), the Italian Istituto Nazionale di Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by institutions from Belgium, Germany, Greece, Hungary, Ireland, Japan, Monaco, Poland, Portugal and Spain. This research has made use of the NASA/IPAC Extragalactic Database, which is funded by NASA and operated by the California Institute of Technology; NASA’s Astrophysics Data System Bibliographic Services. This research has made use of the DSS-2 based on photographic data obtained using The UK Schmidt Telescope. The UK Schmidt Telescope was operated by the Royal Observatory Edinburgh, with funding from the UK Science and Engineering Research Council, until June 1988, and thereafter by the Anglo-Australian Observatory. The DSS was produced at the Space Telescope Science Institute under US Government grant number NAG W-2166. A.M., F.H.P. and M.K. utilized the OzSTAR national facility at Swinburne University of Technology. The OzSTAR programme receives funding in part from the Astronomy National Collaborative Research Infrastructure Strategy (NCRIS) allocation provided by the Australian Government. L.W., F.H.P. and M.K. acknowledge funding support from Australian Research Council Centre of Excellence for Gravitational Wave Discovery (OzGrav) under grant number CE170100004. M.K. acknowledges the SIRF postgraduate scholarship from the University of Western Australia. C.W.J. acknowledges support from the Australian Government through the Australian Research Council’s Discovery Projects funding scheme (project DP210102103). S.A. and B.Z. acknowledge the Nevada Center for Astrophysics and a Top Tier Doctoral Graduate Research Assistantship at University of Nevada, Las Vegas for support. We acknowledge V. Savchenko and S. Driver for useful correspondence regarding the sGRB coincidence and galaxy luminosity function respectively, Q. Chu for her knowledge sharing of GW signal extraction, T. Slaven-Blair, T. Murphy, D. Dobie and H. Qiu for initial discussions relevant to this research, P. Sutton for valuable comments regarding the calculation of PS and V. Gupta for information regarding far sidelobe pulse detection.

Author information

Authors and Affiliations

Authors

Contributions

A.M. led the GW–FRB coincidence search, GW190425/FRB 20190425A follow-up, chance probability (temporal and spatial) and significance analysis, drafted the initial paper and completed the manuscript. L.W. conceived the original idea for the work, designed the research framework, built the collaboration team, supervised all aspects of the analysis and contributed to the writing and completion of the paper. C.W.J. jointly conceived the original idea for the work, contributed to supervision of students on the project, performed the dispersion measure analysis, assisted with significance analysis and contributed to writing and completion of the paper. F.H.P. contributed the host galaxy search, GW parameter estimation, FRB energetics, sGRB context and paper writing, and Fig. 3 showing FRB–host galaxy coincidences. S.A. and B.Z. proposed the theoretical interpretation of the data, obtained constraints on MTOV for neutron stars and quark stars and contributed to the writing of the theory part of the paper. M.K. generated the approximated GW waveform, whitened the public GW strain data and performed matched filtering to construct the SNR time series.

Corresponding authors

Correspondence to Alexandra Moroianu, Linqing Wen or Clancy W. James.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Flux-dispersion measure distribution of CHIME FRBs.

The majority of CHIME FRBs have flux densities below 5Jy. FRB 20190425A (orange square) resides in the low end of the DM spectrum, but has a somewhat exceptional flux density. Note that these flux densities are lower limits, as CHIME flux measurements are derived under the assumption that each burst is detected in the centre of the primary beam.

Extended Data Fig. 2 CHIME FRB detection rates.

Number NFRB of all (blue histogram) and non- repeating (orange histogram) CHIME FRBs per 5 days. Average rate during the period surrounding GW190425 (dashed black line) for all and non-repeating FRBs shown by the blue and red lines, respectively.

Extended Data Fig. 3 Relevant probability distributions for p(DMGW190425) calculation.

From left to right: probability distribution of redshift z for GW190425 (from https://dcc.ligo.org/LIGO-P2000223/public); and the probability distributions of the mean and standard deviation of the fitted lognormal FRB host galaxy DM distribution25.

Extended Data Table 1 Extragalactic sources within FRB 20190425A’s localization

Supplementary information

Supplementary Information

Supplementary Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moroianu, A., Wen, L., James, C.W. et al. An assessment of the association between a fast radio burst and binary neutron star merger. Nat Astron 7, 579–589 (2023). https://doi.org/10.1038/s41550-023-01917-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-01917-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing