Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A Keplerian disk with a four-arm spiral birthing an episodically accreting high-mass protostar

An Author Correction to this article was published on 16 March 2023

This article has been updated

Abstract

High-mass protostars (M > 8M) are thought to gain the majority of their mass via short, intense bursts of growth. This episodic accretion is thought to be facilitated by gravitationally unstable and subsequently inhomogeneous accretion disks. Limitations of observational capabilities, paired with a lack of observed accretion burst events, have withheld affirmative confirmation of the association between disk accretion, instability and the accretion burst phenomenon in high-mass protostars. Following its 2019 accretion burst, a heatwave driven by a burst of radiation propagated outward from the high-mass protostar G358.93-0.03-MM1. Six very long baseline interferometry observations of the radiatively pumped 6.7 GHz methanol maser were conducted during this period, tracing ever increasing disk radii as the heatwave propagated outward. Concatenating the very long baseline interferometry maps provided a sparsely sampled, milliarcsecond view of the spatio-kinematics of the accretion disk covering a physical range of ~50–900 AU. We term this observational approach ‘heatwave mapping’. We report the discovery of a Keplerian accretion disk with a spatially resolved four-arm spiral pattern around G358.93-0.03-MM1. This result positively implicates disk accretion and spiral arm instabilities into the episodic accretion high-mass star formation paradigm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Moment maps of the 6.7 GHz methanol masers in G358-MM1.
Fig. 2: Methanol maser spatio-kinematics in G358-MM1.
Fig. 3: Analyses of maser data.
Fig. 4: Identification of spiral arms A and B.
Fig. 5: Four-arm spiral identification.
Fig. 6: Velocity residuals upon subtracting the Keplerian disk model.

Similar content being viewed by others

Data availability

Data used in this work can be accessed by searching experiment codes (Table 1) in the following data archives: LBA data (https://atoa.atnf.csiro.au), EVN data (http://archive.jive.nl/scripts/portal.php) and VLBA data (https://data.nrao.edu/portal/#/). The maser spotmaps used in this work, in addition to calibrated data from the six epochs in FITS format, are available at the following link: https://www.masermonitoring.com/g358-mm1-data-availability.

Code availability

The correlate2d algorithm is available from Python’s SciPy package (version 1.10.0). The MCMC algorithm is available from Python’s emcee package (version 3.1.3). The RANSAC algorithm is available from the Python’s scikit-learn package (version 0.19.2).

Change history

References

  1. Caratti o Garatti, A. et al. Disk-mediated accretion burst in a high-mass young stellar object. Nat. Phys. 13, 276–279 (2017).

    Article  Google Scholar 

  2. Hunter, T. R. et al. An extraordinary outburst in the massive protostellar system NGC6334I-MM1: quadrupling of the millimeter continuum. Astrophys. J. Lett. 837, L29 (2017).

    Article  ADS  Google Scholar 

  3. Stecklum, B. et al. Infrared observations of the flaring maser source G358.93-0.03. SOFIA confirms an accretion burst from a massive young stellar object. Astron. Astrophys. 646, A161 (2021).

    Article  Google Scholar 

  4. Szymczak, M., Olech, M., Wolak, P., Gérard, E. & Bartkiewicz, A. Giant burst of methanol maser in S255IR-NIRS3. Astron. Astrophys. 617, A80 (2018).

    Article  ADS  Google Scholar 

  5. MacLeod, G. C. et al. A masing event in NGC 6334I: contemporaneous flaring of hydroxyl, methanol, and water masers. Mon. Notices Royal Astron. Soc. 478, 1077–1092 (2018).

    Article  ADS  Google Scholar 

  6. Volvach, A. E. et al. Monitoring a methanol maser flare associated with the massive star-forming region G358.93-0.03. Mon. Notices Royal Astron. Soc. 494, L59–L63 (2020).

    Article  ADS  Google Scholar 

  7. MacLeod, G. C. et al. Detection of new methanol maser transitions associated with G358.93-0.03. Mon. Notices Royal Astron. Soc. 489, 3981–3989 (2019).

    Article  ADS  Google Scholar 

  8. Hartmann, L. & Kenyon, S. J. The FU Orionis phenomenon. Annu. Rev. Astron. Astrophys. 34, 207–240 (1996).

    Article  ADS  Google Scholar 

  9. Vorobyov, E. I. & Basu, S. The origin of episodic accretion bursts in the early stages of star formation. Astrophys. J. Lett. 633, L137–L140 (2005).

    Article  ADS  Google Scholar 

  10. Meyer, D. M.-A., Vorobyov, E. I., Kuiper, R. & Kley, W. On the existence of accretion-driven bursts in massive star formation. Mon. Notices Royal Astron. Soc. 464, L90–L94 (2017).

    Article  ADS  Google Scholar 

  11. Meyer, D. M. A. et al. Parameter study for the burst mode of accretion in massive star formation. Mon. Notices Royal Astron. Soc. 500, 4448–4468 (2021).

    Article  ADS  Google Scholar 

  12. Jankovic, M. R. et al. Observing substructure in circumstellar discs around massive young stellar objects. Mon. Notices Royal Astron. Soc. 482, 4673–4686 (2019).

    Article  ADS  Google Scholar 

  13. Fujisawa, K. et al. A flare of methanol maser in S255. Astron. Telegr. 8286, 1 (2015).

  14. Brogan, C. L., Hunter, T. R., MacLeod, G., Chibueze, J. O. & Cyganowski, C. J. In Astrophysical Masers: Unlocking the Mysteries of the Universe Vol. 336 (eds Tarchi, A. et al.) 255–258 (Cambridge Univ. Press, 2018).

  15. Moscadelli, L. et al. Extended CH3OH maser flare excited by a bursting massive YSO. Astron. Astrophys. 600, L8 (2017).

    Article  ADS  Google Scholar 

  16. Szymczak, M., Olech, M., Sarniak, R., Wolak, P. & Bartkiewicz, A. Monitoring observations of 6.7 GHz methanol masers. Mon. Notices Royal Astron. Soc. 474, 219–253 (2018).

  17. MacLeod, G. C. et al. A masing event in NGC 6334I: contemporaneous flaring of hydroxyl, methanol, and water masers. Mon. Notices Royal Astron. Soc. 478, 1077–1092 (2018).

    Article  ADS  Google Scholar 

  18. Ginsburg, A., Bally, J., Goddi, C., Plambeck, R. & Wright, M. A Keplerian disk around Orion SrCI, a ~ 15 M YSO. Astrophys. J. 860, 119 (2018).

  19. Caswell, J. L. et al. The 6-GHz methanol multibeam maser catalogue—I. Galactic Centre region, longitudes 345° to 6°. Mon. Notices Royal Astron. Soc. 404, 1029–1060 (2010).

  20. Chambers, E. T., Yusef-Zadeh, F. & Ott, J. Star formation sites toward the Galactic Center region. The correlation of CH3OH masers, H2O masers, and near-IR green sources. Astron. Astrophys. 563, A68 (2014).

    Article  ADS  Google Scholar 

  21. Rickert, M., Yusef-Zadeh, F. & Ott, J. A 6.7 GHz methanol maser survey of the central molecular zone. Mon. Notices Royal Astron. Soc. 482, 5349–5361 (2019).

    Article  ADS  Google Scholar 

  22. Hu, B. et al. On the relationship of UC HII regions and Class II methanol masers. I. Source catalogs. Astrophys. J. 833, 18 (2016).

    Article  ADS  Google Scholar 

  23. Yonekura, Y. et al. The Hitachi and Takahagi 32 m radio telescopes: upgrade of the antennas from satellite communication to radio astronomy. Publ. Astron. Soc. Jpn 68, 74 (2016).

    Article  ADS  Google Scholar 

  24. Cragg, D. M., Sobolev, A. M. & Godfrey, P. D. Models of class II methanol masers based on improved molecular data. Mon. Notices Royal Astron. Soc. 360, 533–545 (2005).

    Article  ADS  Google Scholar 

  25. Breen, S. L., Ellingsen, S. P., Caswell, J. L. & Lewis, B. E. 12.2-GHz methanol masers towards 1.2-mm dust clumps: quantifying high-mass star formation evolutionary schemes. Mon. Notices Royal Astron. Soc. 401, 2219–2244 (2010).

    Article  ADS  Google Scholar 

  26. Sugiyama, K., Saito, Y., Yonekura, Y. & Momose, M. Bursting activity of the 6.668-GHz CH3OH maser detected in G 358.93-00.03 using the Hitachi 32-m. Astron. Telegr. 12446 (2019).

  27. Brogan, C. L. et al. Sub-arcsecond (sub)millimeter imaging of the massive protocluster G358.93–0.03: discovery of 14 new methanol maser lines associated with a hot core. Astrophys. J. Lett. 881, L39 (2019).

    Article  ADS  Google Scholar 

  28. Breen, S. L. et al. Discovery of six new class ii methanol maser transitions, including the unambiguous detection of three torsionally excited lines toward G 358.931-0.030. Astrophys. J. 876, L25 (2019).

    Article  ADS  Google Scholar 

  29. Chen, X. et al. 13CH3OH masers associated with a transient phenomenon in a high-mass young stellar object. Astrophys. J. Lett. 890, L22 (2020).

    Article  ADS  Google Scholar 

  30. Chen, X. et al. New maser species tracing spiral-arm accretion flows in a high-mass young stellar object. Nat. Astron. 4, 1170–1176 (2020).

  31. Bayandina, O. S. et al. A multitransition methanol maser study of the accretion burst source G358.93-0.03-MM1. Astron. J. 163, 83 (2022).

    Article  ADS  Google Scholar 

  32. Burns, R. A. et al. A heatwave of accretion energy traced by masers in the G358-MM1 high-mass protostar. Nat. Astron. 4, 506–510 (2020).

  33. Garay, G., Mardones, D., Rodríguez, L. F., Caselli, P. & Bourke, T. L. Methanol and silicon monoxide observations toward bipolar outflows associated with class 0 objects. Astrophys. J. 567, 980–998 (2002).

    Article  ADS  Google Scholar 

  34. Krumholz, M. R., Klein, R. I. & McKee, C. F. Molecular line emission from massive protostellar disks: predictions for ALMA and EVLA. Astrophys. J. 665, 478–491 (2007).

    Article  ADS  Google Scholar 

  35. Johnston, K. G. et al. Spiral arms and instability within the AFGL 4176 mm1 disc. Astron. Astrophys. 634, L11 (2020).

    Article  ADS  Google Scholar 

  36. Bik, A. & Thi, W. F. Evidence for an inner molecular disk around massive young stellar objects. Astron. Astrophys. 427, L13–L16 (2004).

    Article  ADS  Google Scholar 

  37. Kraus, S. et al. A hot compact dust disk around a massive young stellar object. Nature 466, 339–342 (2010).

    Article  ADS  Google Scholar 

  38. Wheelwright, H. E. et al. Probing discs around massive young stellar objects with CO first overtone emission. Mon. Notices Royal Astron. Soc. 408, 1840–1850 (2010).

    Article  ADS  Google Scholar 

  39. Boley, P. A. et al. The VLTI/MIDI survey of massive young stellar objects. Sounding the inner regions around intermediate- and high-mass young stars using mid-infrared interferometry. Astron. Astrophys. 558, A24 (2013).

    Article  Google Scholar 

  40. Ilee, J. D. et al. CO bandhead emission of massive young stellar objects: determining disc properties. Mon. Notices Royal Astron. Soc. 429, 2960–2973 (2013).

    Article  ADS  Google Scholar 

  41. Ramírez-Tannus, M. C. et al. Massive pre-main-sequence stars in M17. Astron. Astrophys. 604, A78 (2017).

    Article  Google Scholar 

  42. Beltrán, M. T. & de Wit, W. J. Accretion disks in luminous young stellar objects. Astron. Astrophys. Rev. 24, 6 (2016).

    Article  ADS  Google Scholar 

  43. Ohashi, N. et al. Formation of a Keplerian disk in the infalling envelope around L1527 IRS: transformation from infalling motions to Kepler motions. Astrophys. J. 796, 131 (2014).

    Article  ADS  Google Scholar 

  44. Aso, Y. et al. ALMA observations of the transition from infall motion to Keplerian rotation around the late-phase protostar TMC-1A. Astrophys. J. 812, 27 (2015).

    Article  ADS  Google Scholar 

  45. Reid, M. J. et al. Trigonometric parallaxes of high-mass star-forming regions: the structure and kinematics of the Milky Way. Astrophys. J. 783, 130 (2014).

    Article  ADS  Google Scholar 

  46. Pfalzner, S. Spiral arms in accretion disk encounters. Astrophys. J. 592, 986–1001 (2003).

    Article  ADS  Google Scholar 

  47. Cuello, N. et al. Flybys in protoplanetary discs. I. Gas and dust dynamics. Mon. Notices Royal Astron. Soc. 483, 4114–4139 (2019).

    Article  ADS  Google Scholar 

  48. Cuello, N. et al. Flybys in protoplanetary discs. II. Observational signatures. Mon. Notices Royal Astron. Soc. 491, 504–514 (2020).

    Article  ADS  Google Scholar 

  49. Forgan, D. H., Ilee, J. D. & Meru, F. Are Elias 2-27’s spiral arms driven by self-gravity, or by a companion? A comparative spiral morphology study. Astrophys. J. Lett. 860, L5 (2018).

    Article  ADS  Google Scholar 

  50. Dipierro, G., Pinilla, P., Lodato, G. & Testi, L. Dust trapping by spiral arms in gravitationally unstable protostellar discs. Mon. Notices Royal Astron. Soc. 451, 974–986 (2015).

    Article  ADS  Google Scholar 

  51. Ahmadi, A., Kuiper, R. & Beuther, H. Disc kinematics and stability in high-mass star formation. Linking simulations and observations. Astron. Astrophys. 632, A50 (2019).

    Article  ADS  Google Scholar 

  52. Bae, J., Hartmann, L., Zhu, Z. & Nelson, R. P. Accretion outbursts in self-gravitating protoplanetary disks. Astrophys. J. 795, 61 (2014).

    Article  ADS  Google Scholar 

  53. Motogi, K. et al. A face-on accretion system in high-mass star formation: possible dusty infall streams within 100 AU. Astrophys. J. 849, 23 (2017).

    Article  ADS  Google Scholar 

  54. Toomre, A. On the gravitational stability of a disk of stars. Astrophys. J. 139, 1217–1238 (1964).

    Article  ADS  Google Scholar 

  55. Kratter, K. & Lodato, G. Gravitational instabilities in circumstellar disks. Annu. Rev. Astron. Astrophys. 54, 271–311 (2016).

    Article  ADS  Google Scholar 

  56. Lodato, G. & Rice, W. K. M. Testing the locality of transport in self-gravitating accretion discs. Mon. Notices Royal Astron. Soc. 351, 630–642 (2004).

    Article  ADS  Google Scholar 

  57. Lau, Y. Y. & Bertin, G. Discrete spiral modes, spiral waves, and the local dispersion relationship. Astrophys. J. 226, 508–520 (1978).

    Article  ADS  Google Scholar 

  58. Harsono, D., Alexander, R. D. & Levin, Y. Global gravitational instabilities in discs with infall. Mon. Notices Royal Astron. Soc. 413, 423–433 (2011).

    Article  ADS  Google Scholar 

  59. Lodato, G. & Rice, W. K. M. Testing the locality of transport in self-gravitating accretion discs. II. The massive disc case. Mon. Notices Royal Astron. Soc. 358, 1489–1500 (2005).

    Article  ADS  Google Scholar 

  60. Kratter, K. M., Matzner, C. D., Krumholz, M. R. & Klein, R. I. On the role of disks in the formation of stellar systems: a numerical parameter study of rapid accretion. Astrophys. J. 708, 1585–1597 (2010).

    Article  ADS  Google Scholar 

  61. Klassen, M., Pudritz, R. E., Kuiper, R., Peters, T. & Banerjee, R. Simulating the formation of massive protostars. I. Radiative feedback and accretion disks. Astrophys. J. 823, 28 (2016).

    Article  ADS  Google Scholar 

  62. Beuther, H. et al. Fragmentation and disk formation in high-mass star formation: the ALMA view of G351.77-0.54 at 0.06” resolution. Astron. Astrophys. 603, A10 (2017).

    Article  Google Scholar 

  63. Sanna, A. et al. Discovery of a sub-Keplerian disk with jet around a 20 M young star. ALMA observations of G023.01-00.41. Astron. Astrophys. 623, A77 (2019).

  64. Motogi, K. et al. The first bird’s-eye view of a gravitationally unstable accretion disk in high-mass star formation. Astrophys. J. Lett. 877, L25 (2019).

    Article  ADS  Google Scholar 

  65. Frank, J., King, A. & Raine, D. J. Accretion Power in Astrophysics 3rd edn (Cambridge Univ. Press, 2002).

  66. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

    ADS  Google Scholar 

  67. Meyer, D. M. A., Kuiper, R., Kley, W., Johnston, K. G. & Vorobyov, E. Forming spectroscopic massive protobinaries by disc fragmentation. Mon. Notices Royal Astron. Soc. 473, 3615–3637 (2018).

    Article  ADS  Google Scholar 

  68. Cossins, P., Lodato, G. & Clarke, C. J. Characterizing the gravitational instability in cooling accretion discs. Mon. Notices Royal Astron. Soc. 393, 1157–1173 (2009).

    Article  ADS  Google Scholar 

  69. Hirota, T. et al. Disk-driven rotating bipolar outflow in Orion Source I. Nat. Astron. 1, 0146 (2017).

    Article  ADS  Google Scholar 

  70. Burns, R. A. et al. A ‘water spout’ maser jet in S235AB-MIR. Mon. Notices Royal Astron. Soc. 453, 3163–3173 (2015).

    ADS  Google Scholar 

  71. Cesaroni, R. et al. Radio outburst from a massive (proto)star. When accretion turns into ejection. Astron. Astrophys. 612, A103 (2018).

    Article  Google Scholar 

  72. Moscadelli, L. et al. Protostellar outflows at the earliest stages (POETS). III. H2O masers tracing disk-winds and jets near luminous YSOs. Astron. Astrophys. 631, A74 (2019).

    Article  Google Scholar 

  73. Bayandina, O. S. et al. The evolution of the H2O maser emission in the accretion burst source G358.93-0.03. Astron. Astrophys. 664, A44 (2022).

  74. Asaki, Y. et al. Verification of the effectiveness of VSOP-2 phase referencing with a newly developed simulation tool, ARIS. Publ. Astron. Soc. Jpn 59, 397–418 (2007).

    Article  ADS  Google Scholar 

  75. Lee, C.-F., Li, Z.-Y. & Turner, N. J. Spiral structures in an embedded protostellar disk driven by envelope accretion. Nat. Astron. 4, 142–146 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

R.A.B. acknowledges support through the EACOA Fellowship from the East Asian Core Observatories Association. R.A.B., J.O.C. and G.C.M. acknowledge the Global Emerging Radio Astronomy Foundation for contributions to radio astronomy. T.H. is financially supported by the MEXT/JSPS KAKENHI Grant nos. 17K05398, 18H05222 and 20H05845. Y.Y. is financially supported by the MEXT/JSPS KAKANHI Grant nos. 21H01120 and 21H00032. L.U. acknowledges support from the University of Guanajuato (Mexico) Grant ID CIIC 164/2022. A.C.o.G. acknowledges support by PRIN-INAF-MAIN-STREAM 2017. M.O. thanks the Ministry of Education and Science of the Republic of Poland for support and granting funds for the Polish contribution to the International LOFAR Telescope (arrangement no. 2021/WK/02) and for maintenance of the LOFAR PL-612 Baldy (MSHE decision no. 28/530020/SPUB/SP/2022). A.B. and M.D. acknowledge support from the National Science Centre, Poland through Grant 2021/43/B/ST9/02008. O.B. acknowledges financial support from the Italian Ministry of University and Research – Project Proposal CIR01_00010. A.M.S. and D.A.L. were supported by the Ministry of Science and Higher Education of the Russian Federation (state contract FEUZ-2023-0019). D.J. is supported by NRC Canada and by an NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Contributions

R.A.B. led the project as principal investigator for the observations, processed the VLBI data and authored the paper. Y.U. performed the Keplerian modelling of the maser data. N.S. performed the spiral arm identification procedures using RANSAC and MCMC. J. Blanchard conducted the two-dimensional cross-correlation for identification of additional spiral arms. Z.R. conducted the disk inclination measurement. K.S. and Y.Y. selected the target maser source. A.E.V., J. Brand, S.P.v.d.H., Y.Y., Y.T., A.A., G.C.M., M.O. and M.D. conducted single-dish monitoring of masers towards G358.93-0.03. G.O., S.P.E., L.H. and C.P. conducted the LBA observations. All authors contributed to the scientific discussion and helped with the authorship and reviewing process of the paper.

Corresponding author

Correspondence to R. A. Burns.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burns, R.A., Uno, Y., Sakai, N. et al. A Keplerian disk with a four-arm spiral birthing an episodically accreting high-mass protostar. Nat Astron 7, 557–568 (2023). https://doi.org/10.1038/s41550-023-01899-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-01899-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing