Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Frontiers in accretion physics at high X-ray spectral resolution

Abstract

Microcalorimeters have shown remarkable success in delivering high-spectral-resolution observations of the hot and energetic Universe, and have paved the way to revolutionary new science possibilities in X-ray astronomy. There are several research areas in compact-object science that can only be addressed with energy resolution ΔE 5 eV at photon energies of a few kiloelectronvolts, corresponding to a velocity resolution of less than a few hundred kilometres per second, to be ushered in by microcalorimeters. Here we review some of the outstanding questions, focusing on how the research landscape is set to be transformed at the interface between accreting supermassive black holes and their host galaxies, in unravelling the structures of accretion environments, in resolving long-standing issues on the origins of energy and matter feedback, and in testing mass-scaled unification of accretion and feedback. The need to learn lessons from Hitomi and to make improvements in laboratory atomic data precision as well as plasma modelling are highlighted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic overview of the environments of accreting compact objects and their X-ray spectra.
Fig. 2: The road to key discoveries in X-ray astronomy as a function of increasing spectral resolution and improving continuum sensitivity.
Fig. 3: Comparison of joint physical constraints on ionized outflows with a microcalorimeter versus a CCD.
Fig. 4: Schematic illustration of spectral line imprints expected under differing conditions.
Fig. 5: Simulations of XRB thermal versus magnetic winds.

Similar content being viewed by others

Data availability

No new data are presented in this paper. Simulation datasets are available from the corresponding authors upon request.

References

  1. Giacconi, R., Gursky, H., Paolini, F. R. & Rossi, B. B. Evidence for X rays from sources outside the Solar System. Phys. Rev. Lett. 9, 439–443 (1962).

    Article  ADS  Google Scholar 

  2. Branduardi-Raymont, G. et al. The hot and energetic Universe: Solar System and exoplanets. Preprint at https://arxiv.org/abs/1306.2332 (2013).

  3. Hitomi Collaboration et al. The quiescent intracluster medium in the core of the Perseus cluster. Nature 535, 117–121 (2016).

    Article  ADS  Google Scholar 

  4. Hitomi Collaboration et al. Solar abundance ratios of the iron-peak elements in the Perseus cluster. Nature 551, 478–480 (2017).

    Article  ADS  Google Scholar 

  5. Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

    Article  ADS  Google Scholar 

  6. Brinkman, A. C. et al. First light measurements of Capella with the low-energy transmission grating spectrometer aboard the Chandra X-ray observatory. Astrophys. J. Lett. 530, L111–L114 (2000).

    Article  ADS  Google Scholar 

  7. Canizares, C. R. et al. The Chandra high-energy transmission grating: design, fabrication, ground calibration, and 5 years in flight. Publ. Astron. Soc. Pac. 117, 1144–1171 (2005).

    Article  ADS  Google Scholar 

  8. den Herder, J. W. et al. The reflection grating spectrometer on board XMM-Newton. Astron. Astrophys. 365, L7–L17 (2001).

    Article  ADS  Google Scholar 

  9. Porter, F. S. et al. The detector subsystem for the SXS instrument on the ASTRO-H Observatory. In Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray, Society of Photo-Optical Instrumentation Engineers Conference Series Vol. 7732 (eds Arnaud, M. et al.) 77323J (SPIE, 2010).

  10. Mitsuda, K. et al. The high-resolution X-ray microcalorimeter spectrometer system for the SXS on ASTRO-H. In Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray, Society of Photo-Optical Instrumentation Engineers Conference Series Vol. 7732 (eds Arnaud, M. et al.) 773211 (SPIE, 2010).

  11. Tashiro, M. et al. Concept of the X-ray astronomy recovery mission. In Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, Society of Photo-Optical Instrumentation Engineers Conference Series (eds den Herder, J.-W. A. et al.) Vol. 10699, 1069922 (SPIE, 2018).

  12. Nandra, K. et al. The hot and energetic Universe: a white paper presenting the science theme motivating the Athena+ mission. Preprint at https://arxiv.org/abs/1306.2307 (2013).

  13. Takahashi, T. et al. Hitomi (ASTRO-H) X-ray astronomy satellite. J. Astron. Telesc. Instrum. Syst. 4, 021402 (2018).

    Article  ADS  Google Scholar 

  14. Kelley, R. L. et al. The Suzaku high resolution X-ray spectrometer. Publ. Astron. Soc. Jpn 59, 77–112 (2007).

    Article  Google Scholar 

  15. Gandhi, P. Fourth time’s a XARM. Nat. Astron. 2, 434–436 (2018).

    Article  ADS  Google Scholar 

  16. Antonucci, R. Unified models for active galactic nuclei and quasars. Annu. Rev. Astron. Astrophys. 31, 473–521 (1993).

    Article  ADS  Google Scholar 

  17. Netzer, H. Revisiting the unified model of active galactic nuclei. Annu. Rev. Astron. Astrophys. 53, 365–408 (2015).

    Article  ADS  Google Scholar 

  18. Gilli, R., Comastri, A. & Hasinger, G. The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era. Astron. Astrophys. 463, 79–96 (2007).

    Article  ADS  Google Scholar 

  19. Ueda, Y., Akiyama, M., Hasinger, G., Miyaji, T. & Watson, M. G. Toward the standard population synthesis model of the X-ray background: evolution of X-ray luminosity and absorption functions of active galactic nuclei including Compton-thick populations. Astrophys. J. 786, 104 (2014).

    Article  ADS  Google Scholar 

  20. Ananna, T. T. et al. The accretion history of AGNs. I. Supermassive black hole population synthesis model. Astrophys. J. 871, 240 (2019).

    Article  ADS  Google Scholar 

  21. Elvis, M. A structure for quasars. Astrophys. J. 545, 63–76 (2000).

    Article  ADS  Google Scholar 

  22. Markowitz, A. G., Krumpe, M. & Nikutta, R. First X-ray-based statistical tests for clumpy-torus models: eclipse events from 230 years of monitoring of Seyfert AGN. Mon. Not. R. Astron. Soc. 439, 1403–1458 (2014).

    Article  ADS  Google Scholar 

  23. Hopkins, P. F., Torrey, P., Faucher-Giguère, C.-A., Quataert, E. & Murray, N. Stellar and quasar feedback in concert: effects on AGN accretion, obscuration, and outflows. Mon. Not. R. Astron. Soc. 458, 816–831 (2016).

    Article  ADS  Google Scholar 

  24. Ramos Almeida, C. & Ricci, C. Nuclear obscuration in active galactic nuclei. Nat. Astron. 1, 679–689 (2017).

    Article  ADS  Google Scholar 

  25. Hönig, S. F. et al. Dust in the polar region as a major contributor to the infrared emission of active galactic nuclei. Astrophys. J. 771, 87 (2013).

    Article  ADS  Google Scholar 

  26. Izumi, T., Wada, K., Fukushige, R., Hamamura, S. & Kohno, K. Circumnuclear multiphase gas in the Circinus galaxy. II. The molecular and atomic obscuring structures revealed with ALMA. Astrophys. J. 867, 48 (2018).

    Article  ADS  Google Scholar 

  27. García-Burillo, S. et al. The Galaxy Activity, Torus, and Outflow Survey (GATOS). I. ALMA images of dusty molecular tori in Seyfert galaxies. Astron. Astrophys. 652, A98 (2021).

    Article  Google Scholar 

  28. Barvainis, R. Hot dust and the near-infrared bump in the continuum spectra of quasars and active galactic nuclei. Astrophys. J. 320, 537–544 (1987).

    Article  ADS  Google Scholar 

  29. Rogantini, D. et al. Investigating the interstellar dust through the Fe K-edge. Astron. Astrophys. 609, A22 (2018).

    Article  Google Scholar 

  30. Corrales, L. R., García, J., Wilms, J. & Baganoff, F. The dust-scattering component of X-ray extinction: effects on continuum fitting and high-resolution absorption edge structure. Mon. Not. R. Astron. Soc. 458, 1345–1351 (2016).

    Article  ADS  Google Scholar 

  31. Basko, M. M. K-fluorescence lines in spectra of X-ray binaries. Astrophys. J. 223, 268–281 (1978).

    Article  ADS  Google Scholar 

  32. Fabian, A. C., Iwasawa, K., Reynolds, C. S. & Young, A. J. Broad iron lines in active galactic nuclei. Publ. Astron. Soc. Pac. 112, 1145–1161 (2000).

    Article  ADS  Google Scholar 

  33. Molendi, S., Bianchi, S. & Matt, G. Iron and nickel line properties in the X-ray-reflecting region of the Circinus galaxy. Mon. Not. R. Astron. Soc. 343, L1–L4 (2003).

    Article  ADS  Google Scholar 

  34. Murphy, K. D. & Yaqoob, T. An X-ray spectral model for Compton-thick toroidal reprocessors. Mon. Not. R. Astron. Soc. 397, 1549–1562 (2009).

    Article  ADS  Google Scholar 

  35. Baloković, M. et al. New spectral model for constraining torus covering factors from broadband X-ray spectra of active galactic nuclei. Astrophys. J. 854, 42 (2018).

    Article  ADS  Google Scholar 

  36. Shu, X. W., Yaqoob, T. & Wang, J. X. The cores of the Fe Kα Lines in active galactic nuclei: an extended Chandra high energy grating sample. Astrophys. J. Suppl. Ser. 187, 581–606 (2010).

    Article  ADS  Google Scholar 

  37. Reynolds, C. et al. ASTRO-H white paper—AGN reflection. Preprint at https://arxiv.org/abs/1412.1177 (2014).

  38. Hitomi Collaboration et al. Hitomi observation of radio galaxy NGC 1275: the first X-ray microcalorimeter spectroscopy of Fe-Kα line emission from an active galactic nucleus. Publ. Astron. Soc. Jpn 70, 13 (2018).

    ADS  Google Scholar 

  39. Minezaki, T. & Matsushita, K. A new black hole mass estimate for obscured active galactic nuclei. Astrophys. J. 802, 98 (2015).

    Article  ADS  Google Scholar 

  40. Gandhi, P., Hönig, S. F. & Kishimoto, M. The dust sublimation radius as an outer envelope to the bulk of the narrow Fe Kα line emission in type 1 AGNs. Astrophys. J. 812, 113 (2015).

    Article  ADS  Google Scholar 

  41. Uematsu, R. et al. X-ray constraint on the location of the AGN torus in the Circinus galaxy. Astrophys. J. 913, 17 (2021).

    Article  ADS  Google Scholar 

  42. Ezhikode, S. H. et al. Determining the torus covering factors for a sample of type 1 AGN in the local Universe. Mon. Not. R. Astron. Soc. 472, 3492–3511 (2017).

    Article  ADS  Google Scholar 

  43. Ricci, C. et al. The close environments of accreting massive black holes are shaped by radiative feedback. Nature 549, 488–491 (2017).

    Article  ADS  Google Scholar 

  44. Fabian, A. C., Walker, S. A., Pinto, C., Russell, H. R. & Edge, A. C. Effects of the variability of the nucleus of NGC 1275 on X-ray observations of the surrounding intracluster medium. Mon. Not. R. Astron. Soc. 451, 3061–3067 (2015).

    Article  ADS  Google Scholar 

  45. Liu, J. The intrinsic line width of the Fe Kα line of AGN. Mon. Not. R. Astron. Soc. 463, L108–L111 (2016).

    Article  ADS  Google Scholar 

  46. Masterson, M. & Reynolds, C. S. Probing the extent of Fe Kα emission in nearby active galactic nuclei using multi-order analysis of Chandra high energy transmission grating data. Mon. Not. R. Astron. Soc. (in the press); preprint at https://arxiv.org/abs/2207.10686 (2022).

  47. Alonso-Herrero, A. et al. The Galaxy Activity, Torus, and Outflow Survey (GATOS). II. Torus and polar dust emission in nearby Seyfert galaxies. Astron. Astrophys. 652, A99 (2021).

    Article  Google Scholar 

  48. Esparza-Arredondo, D. et al. The dust-gas AGN torus as constrained from X-ray and mid-infrared observations. Astron. Astrophys. 651, A91 (2021).

    Article  Google Scholar 

  49. Marinucci, A. et al. The X-ray reflector in NGC 4945: a time- and space-resolved portrait. Mon. Not. R. Astron. Soc. 423, L6–L10 (2012).

    Article  ADS  Google Scholar 

  50. Andonie, C. et al. Localizing narrow Fe Kα emission within bright AGN. Astron. Astrophys. (in the press); preprint at https://arxiv.org/abs/2204.09469 (2022).

  51. Liu, J., Hönig, S. F., Ricci, C. & Paltani, S. X-ray signatures of the polar dusty gas in AGN. Mon. Not. R. Astron. Soc. 490, 4344–4352 (2019).

    Article  ADS  Google Scholar 

  52. Guainazzi, M. & Tashiro, M. S. The hot Universe with XRISM and Athena. Preprint at https://arxiv.org/abs/06903 (2018).

  53. XRISM Science Team. Science with the X-ray Imaging and Spectroscopy Mission (XRISM). Preprint at https://arxiv.org/abs/2003.04962 (2020).

  54. Barret, D. et al. The ATHENA X-ray Integral Field Unit (X-IFU). In Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, Society of Photo-Optical Instrumentation Engineers Conference Series Vol. 10699 (eds den Herder, J.-W. A. et al.) 106991G (SPIE, 2018).

  55. Kawamuro, T., Izumi, T. & Imanishi, M. A Chandra and ALMA study of X-ray-irradiated gas in the central ~100 pc of the Circinus galaxy. Publ. Astron. Soc. Jpn 71, 68 (2019).

    Article  ADS  Google Scholar 

  56. Matt, G. The iron Kα Compton shoulder in transmitted and reflected spectra. Mon. Not. R. Astron. Soc. 337, 147–150 (2002).

    Article  ADS  Google Scholar 

  57. Iwasawa, K., Fabian, A. C. & Matt, G. The iron K line complex in NGC1068: implications for X-ray reflection in the nucleus. Mon. Not. R. Astron. Soc. 289, 443–449 (1997).

    Article  ADS  Google Scholar 

  58. Bianchi, S. et al. Flux and spectral variations in the Circinus galaxy. Astron. Astrophys. 396, 793–799 (2002).

    Article  ADS  Google Scholar 

  59. Hikitani, M., Ohno, M., Fukazawa, Y., Kawaguchi, T. & Odaka, H. Compton shoulder diagnostics in active galactic nuclei for probing the metallicity of the obscuring Compton-thick tori. Astrophys. J. 867, 80 (2018).

    Article  ADS  Google Scholar 

  60. Watanabe, S. et al. Detection of a fully resolved Compton shoulder of the iron Kα line in the Chandra X-ray spectrum of GX 301-2. Astrophys. J. Lett. 597, L37–L40 (2003).

    Article  ADS  Google Scholar 

  61. Kallman, T. R. & McCray, R. X-ray nebular models. Astrophys. J. Suppl. Ser. 50, 263–317 (1982).

    Article  ADS  Google Scholar 

  62. Nagase, F. Accretion-powered X-ray pulsars. Publ. Astron. Soc. Jpn 41, 1 (1989).

    ADS  Google Scholar 

  63. Oh, K. et al. The 105-month Swift-BAT all-sky hard X-ray survey. Astrophys. J. Suppl. Ser. 235, 4 (2018).

    Article  ADS  Google Scholar 

  64. Shirai, H. et al. Detailed hard X-ray measurements of nuclear emission from the Seyfert2 galaxy NGC4388 with Suzaku. Publ. Astron. Soc. Jpn 60, S263 (2008).

    Article  Google Scholar 

  65. Dauser, T., Garcia, J., Parker, M. L., Fabian, A. C. & Wilms, J. The role of the reflection fraction in constraining black hole spin. Mon. Not. R. Astron. Soc. 444, L100–L104 (2014).

    Article  ADS  Google Scholar 

  66. García, J. et al. Improved reflection models of black hole accretion disks: treating the angular distribution of X-rays. Astrophys. J. 782, 76 (2014).

    Article  ADS  Google Scholar 

  67. Asmus, D., Hönig, S. F. & Gandhi, P. The subarcsecond mid-infrared view of local active galactic nuclei. III. Polar dust emission. Astrophys. J. 822, 109 (2016).

    Article  ADS  Google Scholar 

  68. Hughes, S. A. Untangling the merger history of massive black holes with LISA. Mon. Not. R. Astron. Soc. 331, 805–816 (2002).

    Article  ADS  Google Scholar 

  69. Yu, Q. & Lu, Y. Fe Kα line: a tool to probe massive binary black holes in active galactic nuclei? Astron. Astrophys. 377, 17–22 (2001).

    Article  ADS  Google Scholar 

  70. Jovanović, P., Borka Jovanović, V., Borka, D. & Popović, L. Č. Possible observational signatures of supermassive black hole binaries in their Fe Kα line profiles. Contrib. Astron. Observatory Skalnate Pleso 50, 219–234 (2020).

    ADS  Google Scholar 

  71. Komossa, S., Zhou, H. & Lu, H. A recoiling supermassive black hole in the quasar SDSS J092712.65+294344.0? Astrophys. J. Lett. 678, L81 (2008).

    Article  ADS  Google Scholar 

  72. Armitage, P. J. & Natarajan, P. Accretion during the merger of supermassive black holes. Astrophys. J. Lett. 567, L9–L12 (2002).

    Article  ADS  Google Scholar 

  73. Done, C., Gierliński, M. & Kubota, A. Modelling the behaviour of accretion flows in X-ray binaries. Everything you always wanted to know about accretion but were afraid to ask. Astron. Astrophys. Rev. 15, 1–66 (2007).

    Article  ADS  Google Scholar 

  74. Remillard, R. A. & McClintock, J. E. X-Ray properties of black-hole binaries. Annu. Rev. Astron. Astrophys. 44, 49–92 (2006).

    Article  ADS  Google Scholar 

  75. Lasota, J.-P. The disc instability model of dwarf novae and low-mass X-ray binary transients. New Astron. Rev. 45, 449–508 (2001).

    Article  ADS  Google Scholar 

  76. Fabian, A. C., Rees, M. J., Stella, L. & White, N. E. X-ray fluorescence from the inner disc in Cygnus X-1. Mon. Not. R. Astron. Soc. 238, 729–736 (1989).

    Article  ADS  Google Scholar 

  77. Tanaka, Y. et al. Gravitationally redshifted emission implying an accretion disk and massive black hole in the active galaxy MCG-6-30-15. Nature 375, 659–661 (1995).

    Article  ADS  Google Scholar 

  78. Seward, F. D. & Charles, P. A. Exploring the X-ray Universe (Cambridge Univ. Press, 2010).

  79. George, I. M. & Fabian, A. C. X-ray reflection from cold matter in active galactic nuclei and X-ray binaries. Mon. Not. R. Astron. Soc. 249, 352 (1991).

    Article  ADS  Google Scholar 

  80. Laor, A. Line profiles from a disk around a rotating black hole. Astrophys. J. 376, 90 (1991).

    Article  ADS  Google Scholar 

  81. Brenneman, L. Measuring the Angular Momentum of Supermassive Black Holes (Springer, 2013).

  82. Dovčiak, M., Karas, V. & Yaqoob, T. An extended scheme for fitting X-ray data with accretion disk spectra in the strong gravity regime. Astrophys. J. Suppl. Ser. 153, 205–221 (2004).

    Article  ADS  Google Scholar 

  83. Reynolds, C. S. Observational constraints on black hole spin. Annu. Rev. Astron. Astrophys. 59, 117–154 (2021).

    Article  ADS  Google Scholar 

  84. Miller, J. M., Homan, J. & Miniutti, G. A prominent accretion disk in the low-hard state of the black hole candidate SWIFT J1753.5−0127. Astrophys. J. Lett. 652, L113–L116 (2006).

    Article  ADS  Google Scholar 

  85. Done, C. & Diaz Trigo, M. A re-analysis of the iron line in the XMM-Newton data from the low/hard state in GX339-4. Mon. Not. R. Astron. Soc. 407, 2287–2296 (2010).

    Article  ADS  Google Scholar 

  86. Turner, T. J. & Miller, L. X-ray absorption and reflection in active galactic nuclei. Astron. Astrophys. Rev. 17, 47–104 (2009).

    Article  ADS  Google Scholar 

  87. Hagino, K. et al. A disc wind interpretation of the strong Fe Kα features in 1H 0707−495. Mon. Not. R. Astron. Soc. 461, 3954–3963 (2016).

    Article  ADS  Google Scholar 

  88. McClintock, J. E. et al. The spin of the near-extreme Kerr black hole GRS 1915+105. Astrophys. J. 652, 518–539 (2006).

    Article  ADS  Google Scholar 

  89. Yamada, S. et al. Is the black hole in GX 339-4 really spinning rapidly? Astrophys. J. Lett. 707, L109–L113 (2009).

    Article  ADS  Google Scholar 

  90. Uttley, P., Cackett, E. M., Fabian, A. C., Kara, E. & Wilkins, D. R. X-ray reverberation around accreting black holes. Astron. Astrophys. Rev. 22, 72 (2014).

    Article  ADS  Google Scholar 

  91. De Marco, B. et al. The inner flow geometry in MAXI J1820+070 during hard and hard-intermediate states. Astron. Astrophys. 654, A14 (2021).

    Article  Google Scholar 

  92. Kara, E. et al. The corona contracts in a black-hole transient. Nature 565, 198–201 (2019).

    Article  ADS  Google Scholar 

  93. Connors, R. M. T. et al. Conflicting disk inclination estimates for the black hole X-Ray binary XTE J1550−564. Astrophys. J. 882, 179 (2019).

    Article  ADS  Google Scholar 

  94. Draghis, P. A. et al. The spin and orientation of the black hole in XTE J1908+094. Preprint at https://arxiv.org/abs/2107.02810 (2021).

  95. Crummy, J., Fabian, A. C., Gallo, L. & Ross, R. R. An explanation for the soft X-ray excess in active galactic nuclei. Mon. Not. R. Astron. Soc. 365, 1067–1081 (2006).

    Article  ADS  Google Scholar 

  96. Noda, H. et al. The nature of stable soft x-ray emissions in several types of active galactic nuclei observed by Suzaku. Publ. Astron. Soc. Jpn 65, 4 (2013).

    Article  ADS  Google Scholar 

  97. Petrucci, P. O. et al. Testing warm Comptonization models for the origin of the soft X-ray excess in AGNs. Astron. Astrophys. 611, A59 (2018).

    Article  MathSciNet  Google Scholar 

  98. Belczynski, K., Done, C. & Lasota, J. P. All apples: comparing black holes in X-ray binaries and gravitational-wave sources. Preprint at https://arxiv.org/abs/2111.09401 (2021).

  99. Coppi, P. S. The physics of hybrid thermal/non-thermal plasmas. In High Energy Processes in Accreting Black Holes, Astronomical Society of the Pacific Conference Series Vol. 161 (eds Poutanen, J. & Svensson, R.) 375 (Astronomical Society of the Pacific, 1999).

  100. Makishima, K. et al. Suzaku results on Cygnus X-1 in the low/hard state. Publ. Astron. Soc. Jpn 60, 585 (2008).

    Article  ADS  Google Scholar 

  101. Yamada, S. et al. Evidence for a cool disk and inhomogeneous coronae from wide-band temporal spectroscopy of Cygnus X-1 with Suzaku. Publ. Astron. Soc. Jpn 65, 80 (2013).

    Article  ADS  Google Scholar 

  102. Barret, D. & Cappi, M. Inferring black hole spins and probing accretion/ejection flows in AGNs with the Athena X-ray integral field unit. Astron. Astrophys. 628, A5 (2019).

    Article  ADS  Google Scholar 

  103. Fabian, A. C. et al. Blueshifted absorption lines from X-ray reflection in IRAS 13224−3809. Mon. Not. R. Astron. Soc. 493, 2518–2522 (2020).

    Article  ADS  Google Scholar 

  104. Harrison, F. A. et al. The Nuclear Spectroscopic Telescope Array (NuSTAR) high-energy X-Ray mission. Astrophys. J. 770, 103 (2013).

    Article  ADS  Google Scholar 

  105. Jimenez-Garate, M. A., Raymond, J. C. & Liedahl, D. A. The structure and X-ray recombination emission of a centrally illuminated accretion disk atmosphere and corona. Astrophys. J. 581, 1297–1327 (2002).

    Article  ADS  Google Scholar 

  106. Done, C. et al. ASTRO-H white paper—low-mass X-ray binaries. Preprint at https://arxiv.org/abs/1412.1164 (2014).

  107. Iwasawa, K., Miniutti, G. & Fabian, A. C. Flux and energy modulation of redshifted iron emission in NGC 3516: implications for the black hole mass. Mon. Not. R. Astron. Soc. 355, 1073–1079 (2004).

    Article  ADS  Google Scholar 

  108. McNamara, B. R. & Nulsen, P. E. J. Heating hot atmospheres with active galactic nuclei. Annu. Rev. Astron. Astrophys. 45, 117–175 (2007).

    Article  ADS  Google Scholar 

  109. Harrison, C. M. Impact of supermassive black hole growth on star formation. Nat. Astron. 1, 0165 (2017).

    Article  ADS  Google Scholar 

  110. Morganti, R. The many routes to AGN feedback. Front. Astron. Space Sci. 4, 42 (2017).

    Article  ADS  Google Scholar 

  111. Silk, J. & Rees, M. J. Quasars and galaxy formation. Astron. Astrophys. 331, L1–L4 (1998).

    ADS  Google Scholar 

  112. Fabian, A. C. The obscured growth of massive black holes. Mon. Not. R. Astron. Soc. 308, L39–L43 (1999).

    Article  ADS  Google Scholar 

  113. Ferrarese, L. & Merritt, D. A fundamental relation between supermassive black holes and their host galaxies. Astrophys. J. Lett. 539, L9–L12 (2000).

    Article  ADS  Google Scholar 

  114. Marconi, A. & Hunt, L. K. The relation between black hole mass, bulge mass, and near-infrared luminosity. Astrophys. J. Lett. 589, L21–L24 (2003).

    Article  ADS  Google Scholar 

  115. Di Matteo, T., Springel, V. & Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604–607 (2005).

    Article  ADS  Google Scholar 

  116. Díaz Trigo, M. & Boirin, L. Accretion disc atmospheres and winds in low-mass X-ray binaries. Astron. Nachr. 337, 368 (2016).

    Article  ADS  Google Scholar 

  117. Tombesi, F. Accretion disk winds in active galactic nuclei: X-ray observations, models, and feedback. Astron. Nachr. 337, 410 (2016).

    Article  ADS  Google Scholar 

  118. Halpern, J. P. Variable X-ray absorption in the QSO MR 2251−178. Astrophys. J. 281, 90–94 (1984).

    Article  ADS  Google Scholar 

  119. Blustin, A. J., Page, M. J., Fuerst, S. V., Branduardi-Raymont, G. & Ashton, C. E. The nature and origin of Seyfert warm absorbers. Astron. Astrophys. 431, 111–125 (2005).

    Article  ADS  Google Scholar 

  120. Tombesi, F. et al. Unification of X-ray winds in Seyfert galaxies: from ultra-fast outflows to warm absorbers. Mon. Not. R. Astron. Soc. 430, 1102–1117 (2013).

    Article  ADS  Google Scholar 

  121. Reeves, J. N. et al. A Compton-thick wind in the high-luminosity quasar, PDS 456. Astrophys. J. 701, 493–507 (2009).

    Article  ADS  Google Scholar 

  122. Feruglio, C. et al. The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow. Astron. Astrophys. 583, A99 (2015).

    Article  Google Scholar 

  123. Miller, J. M. et al. The magnetic nature of disk accretion onto black holes. Nature 441, 953–955 (2006).

    Article  ADS  Google Scholar 

  124. Ueda, Y., Yamaoka, K. & Remillard, R. GRS 1915+105 in ‘soft state’: nature of accretion disk wind and origin of X-ray emission. Astrophys. J. 695, 888–899 (2009).

    Article  ADS  Google Scholar 

  125. Neilsen, J., Petschek, A. J. & Lee, J. C. Accretion disc wind variability in the states of the microquasar GRS 1915+105. Mon. Not. R. Astron. Soc. 421, 502–511 (2012).

    ADS  Google Scholar 

  126. Degenaar, N. et al. High-resolution X-ray spectroscopy of the bursting pulsar GRO J1744−28. Astrophys. J. Lett. 796, L9 (2014).

    Article  ADS  Google Scholar 

  127. Nowak, M. A. et al. Chandra-HETGS characterization of an outflowing wind in the accreting millisecond pulsar IGR J17591−2342. Astrophys. J. 874, 69 (2019).

    Article  ADS  Google Scholar 

  128. Ueda, Y., Murakami, H., Yamaoka, K., Dotani, T. & Ebisawa, K. Chandra high-resolution spectroscopy of the absorption-line features in the low-mass X-ray binary GX 13+1. Astrophys. J. 609, 325–334 (2004).

    Article  ADS  Google Scholar 

  129. Ponti, G. Ubiquitous equatorial accretion disc winds in black hole soft states. Mon. Not. R. Astron. Soc. 422, L11–L15 (2012).

    Article  ADS  Google Scholar 

  130. Muñoz-Darias, T. et al. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni. Nature 534, 75–78 (2016).

    Article  ADS  Google Scholar 

  131. Crenshaw, D. M., Kraemer, S. B. & George, I. M. Mass loss from the nuclei of active galaxies. Annu. Rev. Astron. Astrophys. 41, 117–167 (2003).

    Article  ADS  Google Scholar 

  132. Castro Segura, N. et al. A persistent ultraviolet outflow from an accreting neutron star binary transient. Nature 603, 52–57 (2022).

    Article  ADS  Google Scholar 

  133. Merloni, A., Heinz, S. & di Matteo, T. A fundamental plane of black hole activity. Mon. Not. R. Astron. Soc. 345, 1057–1076 (2003).

    Article  ADS  Google Scholar 

  134. Falcke, H., Körding, E. & Markoff, S. A scheme to unify low-power accreting black holes. Jet-dominated accretion flows and the radio/X-ray correlation. Astron. Astrophys. 414, 895–903 (2004).

    Article  ADS  Google Scholar 

  135. King, A. L. et al. Regulation of black hole winds and jets across the mass scale. Astrophys. J. 762, 103 (2013).

    Article  ADS  Google Scholar 

  136. Nomura, M. & Ohsuga, K. Line-driven disc wind model for ultrafast outflows in active galactic nuclei - scaling with luminosity. Mon. Not. R. Astron. Soc. 465, 2873–2879 (2017).

    Article  ADS  Google Scholar 

  137. Giustini, M. & Proga, D. A global view of the inner accretion and ejection flow around super massive black holes. Radiation-driven accretion disk winds in a physical context. Astron. Astrophys. 630, A94 (2019).

    Article  ADS  Google Scholar 

  138. Proga, D. & Kallman, T. R. On the role of the ultraviolet and X-ray radiation in driving a disk wind in X-ray binaries. Astrophys. J. 565, 455–470 (2002).

    Article  ADS  Google Scholar 

  139. Tomaru, R., Done, C., Ohsuga, K., Odaka, H. & Takahashi, T. The thermal-radiative wind in the neutron star low-mass X-ray binary GX 13+1. Mon. Not. R. Astron. Soc. 497, 4970–4980 (2020).

    Article  ADS  Google Scholar 

  140. Mizumoto, M., Nomura, M., Done, C., Ohsuga, K. & Odaka, H. UV line-driven disc wind as the origin of ultrafast outflows in AGN. Mon. Not. R. Astron. Soc. 503, 1442–1458 (2021).

    Article  ADS  Google Scholar 

  141. Laha, S. et al. Ionized outflows from active galactic nuclei as the essential elements of feedback. Nat. Astron. 5, 13–24 (2021).

    Article  ADS  Google Scholar 

  142. Begelman, M. C., McKee, C. F. & Shields, G. A. Compton heated winds and coronae above accretion disks. I Dynamics. Astrophys. J. 271, 70–88 (1983).

    Article  ADS  Google Scholar 

  143. Contopoulos, J. & Lovelace, R. V. E. Magnetically driven jets and winds: exact solutions. Astrophys. J. 429, 139 (1994).

    Article  ADS  Google Scholar 

  144. Fukumura, K., Kazanas, D., Contopoulos, I. & Behar, E. Magnetohydrodynamic accretion disk winds as X-ray absorbers in active galactic nuclei. Astrophys. J. 715, 636–650 (2010).

    Article  ADS  Google Scholar 

  145. Fukumura, K. & Tombesi, F. Constraining X-ray coronal size with transverse motion of AGN ultra-fast outflows. Astrophys. J. Lett. 885, L38 (2019).

    Article  ADS  Google Scholar 

  146. Fukumura, K., Kazanas, D., Contopoulos, I. & Behar, E. Modeling high-velocity QSO absorbers with photoionized magnetohydrodynamic disk winds. Astrophys. J. Lett. 723, L228–L232 (2010).

    Article  ADS  Google Scholar 

  147. Chakravorty, S. et al. Absorption lines from magnetically driven winds in X-ray binaries. Astron. Astrophys. 589, A119 (2016).

    Article  Google Scholar 

  148. Waters, T. & Proga, D. Magnetothermal disc winds in X-ray binaries: poloidal magnetic fields suppress thermal winds. Mon. Not. R. Astron. Soc. 481, 2628–2645 (2018).

    ADS  Google Scholar 

  149. Tomaru, R., Done, C. & Mao, J. What powers the wind from the black hole accretion disc in GRO J1655−40? Preprint at https://arxiv.org/abs/2204.08802 (2022).

  150. Fukumura, K. et al. Modeling magnetic disk wind state transitions in black hole X-ray binaries. Astrophys. J. 912, 86 (2021).

    Article  ADS  Google Scholar 

  151. Giustini, M. & Proga, D. On the diversity and complexity of absorption line profiles produced by outflows in active galactic nuclei. Astrophys. J. 758, 70 (2012).

    Article  ADS  Google Scholar 

  152. Miller, J. M. et al. Powerful, rotating disk winds from stellar-mass black holes. Astrophys. J. 814, 87 (2015).

    Article  ADS  Google Scholar 

  153. Everett, J. E. Radiative transfer and acceleration in magnetocentrifugal winds. Astrophys. J. 631, 689–706 (2005).

    Article  ADS  Google Scholar 

  154. Ohsuga, K., Mineshige, S., Mori, M. & Kato, Y. Global radiation-magnetohydrodynamic simulations of black-hole accretion flow and outflow: unified model of three states. Publ. Astron. Soc. Jpn 61, L7–L11 (2009).

    Article  ADS  Google Scholar 

  155. Luminari, A. et al. Speed limits for radiation driven SMBH winds. Preprint at https://arxiv.org/abs/2012.07877 (2020).

  156. Proga, D. & Kallman, T. R. Dynamics of line-driven disk winds in active galactic nuclei. II. Effects of disk radiation. Astrophys. J. 616, 688–695 (2004).

    Article  ADS  Google Scholar 

  157. Matthews, J. H. et al. Stratified disc wind models for the AGN broad-line region: ultraviolet, optical, and X-ray properties. Mon. Not. R. Astron. Soc. 492, 5540–5560 (2020).

    Article  ADS  Google Scholar 

  158. Shakura, N. I. & Sunyaev, R. A. Reprint of 1973A&A….24.337S. Black holes in binary systems. Observational appearance. Astron. Astrophys. 500, 33–51 (1973).

    ADS  Google Scholar 

  159. Shidatsu, M., Done, C. & Ueda, Y. An optically thick disk wind in GRO J1655−40? Astrophys. J. 823, 159 (2016).

    Article  ADS  Google Scholar 

  160. Reeves, J. N. et al. A new relativistic component of the accretion disk wind in PDS 456. Astrophys. J. Lett. 854, L8 (2018).

    Article  ADS  Google Scholar 

  161. Boissay-Malaquin, R., Danehkar, A., Marshall, H. L. & Nowak, M. A. Relativistic components of the ultra-fast outflow in the quasar PDS 456 from Chandra/HETGS, NuSTAR, and XMM-Newton observations. Astrophys. J. 873, 29 (2019).

    Article  ADS  Google Scholar 

  162. Begelman, M. C. & McKee, C. F. Compton heated winds and coronae above accretion disks. II. Radiative transfer and observable consequences. Astrophys. J. 271, 89–112 (1983).

    Article  ADS  Google Scholar 

  163. Sim, S. A., Long, K. S., Miller, L. & Turner, T. J. Multidimensional modelling of X-ray spectra for AGN accretion disc outflows. Mon. Not. R. Astron. Soc. 388, 611–624 (2008).

    Article  ADS  Google Scholar 

  164. Harwit, M. Cosmic Discovery. The Search, Scope, and Heritage of Astronomy (Harvester Press, 1981).

  165. Hitomi Collaboration et al. Atomic data and spectral modeling constraints from high-resolution X-ray observations of the Perseus cluster with Hitomi. Publ. Astron. Soc. Jpn 70, 12 (2018).

    ADS  Google Scholar 

  166. Bulbul, E. et al. Detection of an unidentified emission line in the stacked X-Ray spectrum of galaxy clusters. Astrophys. J. 789, 13 (2014).

    Article  ADS  Google Scholar 

  167. Aharonian, F. A. et al. Hitomi constraints on the 3.5 keV line in the Perseus galaxy cluster. Astrophys. J. Lett. 837, L15 (2017).

    Article  ADS  Google Scholar 

  168. Gu, L. et al. Charge exchange in galaxy clusters. Astron. Astrophys. 611, A26 (2018).

    Article  Google Scholar 

  169. Mehdipour, M., Kaastra, J. S. & Kallman, T. Systematic comparison of photoionised plasma codes with application to spectroscopic studies of AGN in X-rays. Astron. Astrophys. 596, A65 (2016).

    Article  ADS  Google Scholar 

  170. Gursky, H. et al. A strong X-ray source in the Coma cluster observed by UHURU. Astrophys. J. Lett. 167, L81 (1971).

    Article  ADS  Google Scholar 

  171. Mitchell, R. J., Culhane, J. L., Davison, P. J. N. & Ives, J. C. Ariel 5 observations of the X-ray spectrum of the Perseus cluster. Mon. Not. R. Astron. Soc. 175, 29P–34P (1976).

    Article  ADS  Google Scholar 

  172. Barr, P., White, N. E. & Page, C. G. The discovery of low-level iron K line emission from CYG X-1. Mon. Not. R. Astron. Soc. 216, 65P–70P (1985).

    Article  ADS  Google Scholar 

  173. Tombesi, F. et al. Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines. Astron. Astrophys. 521, A57 (2010).

    Article  Google Scholar 

  174. Nicastro, F. et al. The mass of the missing baryons in the X-ray forest of the warm-hot intergalactic medium. Nature 433, 495–498 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.D.T., T.K. and P.G. contributed equally to the main scientific content presented herein. P.G. led the conception, coordination and thematic definition of this work, together with participants of the XCalibur2019 international workshop in Winchester, UK, in July 2019. The focus of the workshop was to identify and review game-changing science to be expected in forthcoming microcalorimeter missions, serving as a genesis for this Review. J.A.P. executed the artistic design of the schematic diagram and contributed to the design of all other figures herein. T.K. is responsible for the ‘The accretion environment’ section and M.D.T. led the ‘Energy and matter feedback’ section. All authors read and contributed to the overall text.

Corresponding authors

Correspondence to P. Gandhi, T. Kawamuro or M. Díaz Trigo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandhi, P., Kawamuro, T., Díaz Trigo, M. et al. Frontiers in accretion physics at high X-ray spectral resolution. Nat Astron 6, 1364–1375 (2022). https://doi.org/10.1038/s41550-022-01857-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01857-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing