Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The case for a minute-long merger-driven gamma-ray burst from fast-cooling synchrotron emission

Abstract

For decades, gamma-ray bursts (GRBs) have been broadly divided into long- and short-duration bursts, lasting more or less than 2 s, respectively. However, this dichotomy does not perfectly map to the two progenitor channels that are known to produce GRBs: mergers of compact objects (merger GRBs) or the collapse of massive stars (collapsar GRBs). In particular, the merger GRB population may also include bursts with a short, hard <2 s spike and subsequent longer, softer extended emission. The recent discovery of a kilonova—the radioactive glow of heavy elements made in neutron star mergers—in the 50-s-duration GRB 211211A further demonstrates that mergers can drive long, complex GRBs that mimic the collapsar population. Here we present a detailed temporal and spectral analysis of the high-energy emission of GRB 211211A. We demonstrate that the emission has a purely synchrotron origin, with both the peak and cooling frequencies moving through the γ-ray band down to X-rays, and that the rapidly evolving spectrum drives the extended emission signature at late times. The identification of such spectral evolution in a merger GRB opens avenues to diagnostics of the progenitor type.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Spectral fits with the 2SBPL model from six representative epochs in the GBM and BAT light curves.
Fig. 2: Relative support for the fitted models from the AIC.
Fig. 3: The evolution of the synchrotron spectrum from our time-resolved spectral fits.
Fig. 4: Evolution of the spectral breaks and their influence on the light curve.
Fig. 5: The X-ray light curves of EE GRBs.
Fig. 6: A joint fit of XRT and UVOT data centred around 163 s.

Data availability

The majority of data generated or analysed during this study are included in this Article and its Supplementary Information. Swift and Fermi data can be downloaded from the UK Swift Science Data Centre (https://www.swift.ac.uk/) and the online HEARSAC archive (https://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html). Additional data are available from the corresponding author upon reasonable request.

Code availability

The codes used in this publication are all publicly available. Fitting was performed in XSPEC17, which is available from https://heasarc.gsfc.nasa.gov/xanadu/xspec/. Swift tools are available from https://heasarc.gsfc.nasa.gov/lheasoft/, and Fermi tools from https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/gtburst.html. The 2SBPL model is published in ref. 19. Plots were created using MATPLOTLIB108 in Python v3.9.7.

References

  1. Mangan, J., Dunwood, R. & Meegan, C. GRB 211211A: Fermi GBM observation. GRB Coord. Netw. Circ. No. 31210 (2021).

  2. Stamatikos, M. et al. GRB 211211A: Swift-BAT refined analysis. GRB Coord. Netw. Circ. No. 31209 (2021).

  3. Kouveliotou, C. et al. Identification of two classes of gamma-ray bursts. Astrophys. J. Lett. 413, L101 (1993).

    Article  ADS  Google Scholar 

  4. Burrows, D. N. et al. The Swift X-ray telescope. Space Sci. Rev. 120, 165–195 (2005).

    Article  ADS  Google Scholar 

  5. D’Ai, A. et al. GRB 211211A: Swift detection of a bright burst. GRB Coord. Netw. Circ. No. 31202 (2021).

  6. Norris, J. P. Implications of the lag-luminosity relationship for unified gamma-ray burst paradigms. Astrophys. J. 579, 386–403 (2002).

    Article  ADS  Google Scholar 

  7. Norris, J. P. & Bonnell, J. T. Short gamma-ray bursts with extended emission. Astrophys. J. 643, 266–275 (2006).

    Article  ADS  Google Scholar 

  8. Norris, J. P., Gehrels, N. & Scargle, J. D. Threshold for extended emission in short gamma-ray bursts. Astrophys. J. 717, 411–419 (2010).

    Article  ADS  Google Scholar 

  9. Gompertz, B. P., O’Brien, P. T., Wynn, G. A. & Rowlinson, A. Can magnetar spin-down power extended emission in some short GRBs? Mon. Not. R. Astron. Soc. 431, 1745–1751 (2013).

    Article  ADS  Google Scholar 

  10. Roming, P. W. A. et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 120, 95–142 (2005).

    Article  ADS  Google Scholar 

  11. Belles, A. & D’Ai, A. GRB 211211A: Swift/UVOT detection. GRB Coord. Netw. Circ. No. 31222 (2021).

  12. Rastinejad, J. C. et al. A kilonova following a long-duration gamma-ray burst at 350 Mpc. Preprint at https://arxiv.org/abs/2204.10864 (2022).

  13. Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    Article  ADS  Google Scholar 

  14. Malesani, D. B. et al. GRB 211211A: NOT optical spectroscopy. GRB Coord. Netw. Circ. No. 31221 (2021).

  15. Mei, A. et al. GeV emission from a compact binary merger. Preprint at https://arxiv.org/abs/2205.08566 (2022).

  16. Zhang, H.-M., Huang, Y.-Y., Zheng, J.-H., Liu, R.-Y. & Wang, X.-Y. Fermi-LAT detection of a GeV afterglow from a compact stellar merger. Astrophys. J. Lett. 933, L22 (2022).

    Article  ADS  Google Scholar 

  17. Arnaud, K. A. XSPEC: the first ten years. In Astronomical Data Analysis Software and Systems V Conference Series Vol. 101 (eds Jacoby, G. H. & Barnes, J.) 17 (Astronomical Society of the Pacific, 1996).

  18. Gehrels, N. et al. A new γ-ray burst classification scheme from GRB060614. Nature 444, 1044–1046 (2006).

    Article  ADS  Google Scholar 

  19. Ravasio, M. E. et al. Consistency with synchrotron emission in the bright GRB 160625B observed by Fermi. Astron. Astrophys. 613, A16 (2018).

    Article  Google Scholar 

  20. Band, D. et al. BATSE observations of gamma-ray burst spectra. I. Spectral diversity. Astrophys. J. 413, 281 (1993).

    Article  ADS  Google Scholar 

  21. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).

    Article  ADS  MATH  Google Scholar 

  22. Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).

    Article  Google Scholar 

  23. Rybicki, G. B. & Lightman, A. P. Radiative Processes in Astrophysics (Wiley, 1979).

  24. Sari, R., Piran, T. & Narayan, R. Spectra and light curves of gamma-ray burst afterglows. Astrophys. J. Lett. 497, L17–L20 (1998).

    Article  ADS  Google Scholar 

  25. Piran, T. Gamma-ray bursts and the fireball model. Phys. Rep. 314, 575–667 (1999).

    Article  ADS  Google Scholar 

  26. Ravasio, M. E., Ghirlanda, G., Nava, L. & Ghisellini, G. Evidence of two spectral breaks in the prompt emission of gamma-ray bursts. Astron. Astrophys. 625, A60 (2019).

    Article  ADS  Google Scholar 

  27. Ronchi, M. et al. Rise and fall of the high-energy afterglow emission of GRB 180720B. Astron. Astrophys. 636, A55 (2020).

    Article  Google Scholar 

  28. Burgess, J. M. et al. Gamma-ray bursts as cool synchrotron sources. Nat. Astron. 4, 174–179 (2020).

    Article  ADS  Google Scholar 

  29. Toffano, M. et al. The slope of the low-energy spectrum of prompt gamma-ray burst emission. Astron. Astrophys. 652, A123 (2021).

    Article  Google Scholar 

  30. Oganesyan, G., Nava, L., Ghirlanda, G. & Celotti, A. Detection of low-energy breaks in gamma-ray burst prompt emission spectra. Astrophys. J. 846, 137 (2017).

    Article  ADS  Google Scholar 

  31. Oganesyan, G., Nava, L., Ghirlanda, G. & Celotti, A. Characterization of gamma-ray burst prompt emission spectra down to soft X-rays. Astron. Astrophys. 616, A138 (2018).

    Article  ADS  Google Scholar 

  32. Oganesyan, G., Nava, L., Ghirlanda, G., Melandri, A. & Celotti, A. Prompt optical emission as a signature of synchrotron radiation in gamma-ray bursts. Astron. Astrophys. 628, A59 (2019).

    Article  ADS  Google Scholar 

  33. Lü, H.-J., Zhang, B., Lei, W.-H., Li, Y. & Lasky, P. D. The millisecond magnetar central engine in short GRBs. Astrophys. J. 805, 89 (2015).

    Article  ADS  Google Scholar 

  34. Gompertz, B. P., Levan, A. J. & Tanvir, N. R. A search for neutron star-black hole binary mergers in the short gamma-ray burst population. Astrophys. J. 895, 58 (2020).

    Article  ADS  Google Scholar 

  35. Kumar, P. & McMahon, E. A general scheme for modelling γ-ray burst prompt emission. Mon. Not. R. Astron. Soc. 384, 33–63 (2008).

    Article  ADS  Google Scholar 

  36. Daigne, F., Bošnjak, Ž. & Dubus, G. Reconciling observed gamma-ray burst prompt spectra with synchrotron radiation? Astron. Astrophys. 526, A110 (2011).

    Article  ADS  Google Scholar 

  37. Beniamini, P. & Piran, T. Constraints on the synchrotron emission mechanism in gamma-ray bursts. Astrophys. J. 769, 69 (2013).

    Article  ADS  Google Scholar 

  38. Ghisellini, G., Celotti, A. & Lazzati, D. Constraints on the emission mechanisms of gamma-ray bursts. Mon. Not. R. Astron. Soc. 313, L1–L5 (2000).

    Article  ADS  Google Scholar 

  39. Piran, T., de Gouveia dal Pino, E. M., Lugones, G. & Lazarian, A. Magnetic fields in gamma-ray bursts: a short overview. In Magnetic Fields in the Universe: From Laboratory and Stars to Primordial Structures Conference Series Vol. 784 (eds de Gouveia dal Pino, E. M. et al.) 164–174 (AIP, 2005).

  40. Shen, R.-F. & Zhang, B. Prompt optical emission and synchrotron self-absorption constraints on emission site of GRBs. Mon. Not. R. Astron. Soc. 398, 1936–1950 (2009).

    Article  ADS  Google Scholar 

  41. Sari, R. & Piran, T. Predictions for the very early afterglow and the optical flash. Astrophys. J. 520, 641–649 (1999).

    Article  ADS  Google Scholar 

  42. Granot, J., Piran, T. & Sari, R. The synchrotron spectrum of fast cooling electrons revisited. Astrophys. J. Lett. 534, L163–L166 (2000).

    Article  ADS  Google Scholar 

  43. Granot, J. & Sari, R. The shape of spectral breaks in gamma-ray burst afterglows. Astrophys. J. 568, 820–829 (2002).

    Article  ADS  Google Scholar 

  44. Ghisellini, G. et al. Proton-synchrotron as the radiation mechanism of the prompt emission of gamma-ray bursts? Astron. Astrophys. 636, A82 (2020).

    Article  Google Scholar 

  45. Lee, W. H., Ramirez-Ruiz, E. & López-Cámara, D. Phase transitions and He-synthesis-driven winds in neutrino cooled accretion disks: prospects for late flares in short gamma-ray bursts. Astrophys. J. Lett. 699, L93–L96 (2009).

    Article  ADS  Google Scholar 

  46. Fernández, R. & Metzger, B. D. Nuclear dominated accretion flows in two dimensions. I. Torus evolution with parametric microphysics. Astrophys. J. 763, 108 (2013).

    Article  ADS  Google Scholar 

  47. Foucart, F., Hinderer, T. & Nissanke, S. Remnant baryon mass in neutron star-black hole mergers: predictions for binary neutron star mimickers and rapidly spinning black holes. Phys. Rev. D 98, 081501 (2018).

    Article  ADS  Google Scholar 

  48. Rosswog, S. Fallback accretion in the aftermath of a compact binary merger. Mon. Not. R. Astron. Soc. 376, L48–L51 (2007).

    Article  ADS  Google Scholar 

  49. Desai, D., Metzger, B. D. & Foucart, F. Imprints of r-process heating on fall-back accretion: distinguishing black hole-neutron star from double neutron star mergers. Mon. Not. R. Astron. Soc. 485, 4404–4412 (2019).

    Article  ADS  Google Scholar 

  50. Kisaka, S. & Ioka, K. Long-lasting black hole jets in short gamma-ray bursts. Astrophys. J. Lett. 804, L16 (2015).

    Article  ADS  Google Scholar 

  51. Metzger, B. D., Quataert, E. & Thompson, T. A. Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down. Mon. Not. R. Astron. Soc. 385, 1455–1460 (2008).

    Article  ADS  Google Scholar 

  52. Metzger, B. D., Giannios, D., Thompson, T. A., Bucciantini, N. & Quataert, E. The protomagnetar model for gamma-ray bursts. Mon. Not. R. Astron. Soc. 413, 2031–2056 (2011).

    Article  ADS  Google Scholar 

  53. Giacomazzo, B. & Perna, R. Formation of stable magnetars from binary neutron star mergers. Astrophys. J. Lett. 771, L26 (2013).

    Article  ADS  Google Scholar 

  54. Gompertz, B. P., O’Brien, P. T. & Wynn, G. A. Magnetar powered GRBs: explaining the extended emission and X-ray plateau of short GRB light curves. Mon. Not. R. Astron. Soc. 438, 240–250 (2014).

    Article  ADS  Google Scholar 

  55. Bucciantini, N., Metzger, B. D., Thompson, T. A. & Quataert, E. Short gamma-ray bursts with extended emission from magnetar birth: jet formation and collimation. Mon. Not. R. Astron. Soc. 419, 1537–1545 (2012).

    Article  ADS  Google Scholar 

  56. Pons, J. A., Reddy, S., Prakash, M., Lattimer, J. M. & Miralles, J. A. Evolution of proto-neutron stars. Astrophys. J. 513, 780–804 (1999).

    Article  ADS  Google Scholar 

  57. Gruber, D. et al. The Fermi GBM gamma-ray burst spectral catalog: four years of data. Astrophys. J. Suppl. Ser. 211, 12 (2014).

    Article  ADS  Google Scholar 

  58. von Kienlin, A. et al. The Second Fermi GBM gamma-ray burst catalog: the first four years. Astrophys. J. Suppl. Ser. 211, 13 (2014).

    Article  ADS  Google Scholar 

  59. von Kienlin, A. et al. The Fourth Fermi-GBM gamma-ray burst catalog: a decade of data. Astrophys. J. 893, 46 (2020).

    Article  ADS  Google Scholar 

  60. Narayana Bhat, P. et al. The Third Fermi GBM gamma-ray burst catalog: the first six years. Astrophys. J. Suppl. Ser. 223, 28 (2016).

    Article  ADS  Google Scholar 

  61. Evans, P. A. et al. An online repository of Swift/XRT light curves of γ-ray bursts. Astron. Astrophys. 469, 379–385 (2007).

    Article  ADS  Google Scholar 

  62. Evans, P. A. et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 397, 1177–1201 (2009).

    Article  ADS  Google Scholar 

  63. HEAsoft: Unified Release of FTOOLS and XANADU (NASA HEASARC, 2014).

  64. Pe’er, A. Physics of gamma-ray bursts prompt emission. Adv. Astron. 2015, 907321 (2015).

    Article  ADS  Google Scholar 

  65. Preece, R. D. et al. The synchrotron shock model confronts a "line of death” in the BATSE gamma-ray burst data. Astrophys. J. Lett. 506, L23–L26 (1998).

    Article  ADS  Google Scholar 

  66. Cash, W. Parameter estimation in astronomy through application of the likelihood ratio. Astrophys. J. 228, 939–947 (1979).

    Article  ADS  Google Scholar 

  67. Wilms, J., Allen, A. & McCray, R. On the absorption of X-rays in the interstellar medium. Astrophys. J. 542, 914–924 (2000).

    Article  ADS  Google Scholar 

  68. Willingale, R., Starling, R. L. C., Beardmore, A. P., Tanvir, N. R. & O’Brien, P. T. Calibration of X-ray absorption in our Galaxy. Mon. Not. R. Astron. Soc. 431, 394–404 (2013).

    Article  ADS  Google Scholar 

  69. Asquini, L. et al. X-ray absorbing column densities of a complete sample of short gamma ray bursts. Astron. Astrophys. 625, A6 (2019).

    Article  Google Scholar 

  70. Campana, S., Lazzati, D., Perna, R., Grazia Bernardini, M. & Nava, L. The variable absorption in the X-ray spectrum of GRB 190114C. Astron. Astrophys. 649, A135 (2021).

    Article  ADS  Google Scholar 

  71. Mangano, V. et al. Swift observations of GRB 060614: an anomalous burst with a well behaved afterglow. Astron. Astrophys. 470, 105–118 (2007).

    Article  ADS  Google Scholar 

  72. Beniamini, P., Nava, L. & Piran, T. A revised analysis of gamma-ray bursts’ prompt efficiencies. Mon. Not. R. Astron. Soc. 461, 51–59 (2016).

    Article  ADS  Google Scholar 

  73. Beloborodov, A. M. On the efficiency of internal shocks in gamma-ray bursts. Astrophys. J. Lett. 539, L25–L28 (2000).

    Article  ADS  Google Scholar 

  74. Cunningham, V. et al. GRB 160625B: evidence for a Gaussian-shaped jet. Astrophys. J. 904, 166 (2020).

    Article  ADS  Google Scholar 

  75. Salafia, O. S. et al. Multi-wavelength view of the close-by GRB 190829A sheds light on gamma-ray burst physics. Astrophys. J. Lett. 931, L19 (2022).

  76. Rees, M. J. & Meszaros, P. Unsteady outflow models for cosmological gamma-ray bursts. Astrophys. J. Lett. 430, L93 (1994).

    Article  ADS  Google Scholar 

  77. Kumar, P. Gamma-ray burst energetics. Astrophys. J. Lett. 523, L113–L116 (1999).

    Article  ADS  Google Scholar 

  78. Spada, M., Panaitescu, A. & Mészáros, P. Analysis of temporal features of gamma-ray bursts in the internal shock model. Astrophys. J. 537, 824–832 (2000).

    Article  ADS  Google Scholar 

  79. Florou, I., Petropoulou, M. & Mastichiadis, A. A marginally fast-cooling proton-synchrotron model for prompt GRBs. Mon. Not. R. Astron. Soc. 505, 1367–1381 (2021).

    Article  ADS  Google Scholar 

  80. Bégué, D., Samuelsson, F. & Pe’er, A. Bethe-Heitler signature in proton synchrotron models for gamma-ray bursts. Astrophys. J. 937, 101 (2022).

  81. Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    Article  ADS  Google Scholar 

  82. Schady, P. et al. Dust and metal column densities in gamma-ray burst host galaxies. Mon. Not. R. Astron. Soc. 401, 2773–2792 (2010).

    Article  ADS  Google Scholar 

  83. Schady, P. et al. Dust and gas in the local environments of gamma-ray bursts. Mon. Not. R. Astron. Soc. 377, 273–284 (2007).

    Article  ADS  Google Scholar 

  84. Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525 (1998).

    Article  ADS  Google Scholar 

  85. Kalberla, P. M. W. et al. The Leiden/Argentine/Bonn (LAB) survey of galactic H I. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775–782 (2005).

    Article  ADS  Google Scholar 

  86. Madau, P. Radiative transfer in a clumpy universe: the colors of high-redshift galaxies. Astrophys. J. 441, 18–27 (1995).

    Article  ADS  Google Scholar 

  87. Barthelmy, S. D. et al. An origin for short γ-ray bursts unassociated with current star formation. Nature 438, 994–996 (2005).

    Article  ADS  Google Scholar 

  88. Perley, D. A. et al. GRB 080503: implications of a naked short gamma-ray burst dominated by extended emission. Astrophys. J. 696, 1871–1885 (2009).

    Article  ADS  Google Scholar 

  89. Lien, A. et al. The Third Swift Burst Alert Telescope gamma-ray burst catalog. Astrophys. J. 829, 7 (2016).

    Article  ADS  Google Scholar 

  90. Tsang, D., Read, J. S., Hinderer, T., Piro, A. L. & Bondarescu, R. Resonant shattering of neutron star crusts. Phys. Rev. Lett. 108, 011102 (2012).

    Article  ADS  Google Scholar 

  91. Tsang, D. Shattering flares during close encounters of neutron stars. Astrophys. J. 777, 103 (2013).

    Article  ADS  Google Scholar 

  92. Neill, D., Newton, W. G. & Tsang, D. Resonant shattering flares as multimessenger probes of the nuclear symmetry energy. Mon. Not. R. Astron. Soc. 504, 1129–1143 (2021).

    Article  ADS  Google Scholar 

  93. Xiao, S. et al. The quasi-periodically oscillating precursor of a long gamma-ray burst from a binary neutron star merger. Preprint at https://arxiv.org/abs/2205.02186 (2022).

  94. Lü, H.-J. et al. GRB 211227A as a peculiar long gamma-ray burst from compact star merger. Astrophys. J. Lett. 931, L23 (2022).

  95. Yang, J. et al. A long-duration gamma-ray burst with a peculiar origin. Preprint at https://arxiv.org/abs/2204.12771 (2022).

  96. Littlejohns, O. M. et al. Are gamma-ray bursts the same at high redshift and low redshift? Mon. Not. R. Astron. Soc. 436, 3640–3655 (2013).

    Article  ADS  Google Scholar 

  97. Ronchini, S. et al. Spectral index-flux relation for investigating the origins of steep decay in γ-ray bursts. Nat. Commun. 12, 4040 (2021).

    Article  ADS  Google Scholar 

  98. Lamb, G. P. & Kobayashi, S. Low-Γ jets from compact stellar mergers: candidate electromagnetic counterparts to gravitational wave sources. Astrophys. J. 829, 112 (2016).

    Article  ADS  Google Scholar 

  99. Fong, W.-F. et al. Short GRB host galaxies I: photometric and spectroscopic catalogs, host associations, and galactocentric offsets. Preprint at https://arxiv.org/abs/2206.01763 (2022).

  100. Bernardini, M. G. et al. Comparing the spectral lag of short and long gamma-ray bursts and its relation with the luminosity. Mon. Not. R. Astron. Soc. 446, 1129–1138 (2015).

    Article  ADS  Google Scholar 

  101. Ukwatta, T. N. et al. Spectral lags and the lag-luminosity relation: an investigation with Swift BAT gamma-ray bursts. Astrophys. J. 711, 1073–1086 (2010).

    Article  ADS  Google Scholar 

  102. Ukwatta, T. N. et al. The lag-luminosity relation in the GRB source frame: an investigation with Swift BAT bursts. Mon. Not. R. Astron. Soc. 419, 614–623 (2012).

    Article  ADS  Google Scholar 

  103. Waxman, E., Ofek, E. O. & Kushnir, D. Strong NIR emission following the long duration GRB 211211A: dust heating as an alternative to a kilonova. Preprint at https://arxiv.org/abs/2206.10710 (2022).

  104. Kasen, D., Metzger, B., Barnes, J., Quataert, E. & Ramirez-Ruiz, E. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 551, 80–84 (2017).

    Article  ADS  Google Scholar 

  105. Lyman, J. D. et al. The host galaxies and explosion sites of long-duration gamma ray bursts: Hubble Space Telescope near-infrared imaging. Mon. Not. R. Astron. Soc. 467, 1795–1817 (2017).

    ADS  Google Scholar 

  106. Santini, P. et al. The evolution of the dust and gas content in galaxies. Astron. Astrophys. 562, A30 (2014).

    Article  Google Scholar 

  107. Calura, F. et al. The dust-to-stellar mass ratio as a valuable tool to probe the evolution of local and distant star-forming galaxies. Mon. Not. R. Astron. Soc. 465, 54–67 (2017).

    Article  ADS  Google Scholar 

  108. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Goldstein for his insights into fitting GBM data, S. Barthelmy, D. Palmer, A. Lien and D. Tak for discussions on the performance of BAT and G. Ghisellini for fruitful discussions on emission physics. The work makes use of data supplied by the UK Swift Science Data Centre at the University of Leicester and the Neil Gehrels Swift Observatory. This research has made use of data obtained through the High Energy Astrophysics Science Archive Research Center Online Service provided by the NASA/Goddard Space Flight Center, and specifically this work has made use of public Fermi-GBM data. B.P.G. and M.N. are supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 948381, to M.N.). M.N. acknowledges a Turing Fellowship. A.J.L. and D.B.M. are supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 725246, to A.J.L.). The Cosmic Dawn Center is funded by the Danish National Research Foundation under grant no. 140. B.D.M. is supported in part by the National Science Foundation (grant nos AST-2009255 and AST-2002577). The Flatiron Institute is supported by the Simons Foundation. G.P.L. is supported by the UK Science Technology and Facilities Council under grant no. ST/S000453/1. The Fong Group at Northwestern acknowledges support by the National Science Foundation under grant nos AST-1814782, AST-1909358 and CAREER grant no. AST-2047919. W.F. gratefully acknowledges support from the David and Lucile Packard Foundation. P.A.E. and K.L.P. acknowledge funding from the UK Space Agency.

Author information

Authors and Affiliations

Authors

Contributions

B.P.G. extracted the Swift data, performed the spectral analysis, provided the interpretation of the spectral evolution and the EE context and wrote the text. M.E.R. extracted the Fermi data, performed the spectral analysis, provided the interpretation on the emission physics and co-wrote the text. M.N. and A.J.L. contributed vital insights into the direction of the study and co-wrote the text. B.D.M. provided theoretical interpretation, insights into the progenitor and contributed to the text. S.R.O. performed the afterglow SED fits, reduced the UVOT data and contributed to the text. G.P.L. provided theoretical interpretation, self-consistency checks of the physics and made contributions to the text. D.B.M. helped with the interpretation of the emission physics and writing of the text. W.F., J.C.R., N.R.T., P.G.J. and A.P. helped in the discussion and writing of the text. P.A.E. and K.L.P. provided insights into Swift data reduction and handling, and commented on the text.

Corresponding author

Correspondence to Benjamin P. Gompertz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Hai-Ming Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gompertz, B.P., Ravasio, M.E., Nicholl, M. et al. The case for a minute-long merger-driven gamma-ray burst from fast-cooling synchrotron emission. Nat Astron 7, 67–79 (2023). https://doi.org/10.1038/s41550-022-01819-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01819-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing