Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Finding high-redshift gamma-ray bursts in tandem near-infrared and optical surveys

Gamma-ray bursts are linked to the most distant objects in the Universe, but detecting them is a rare event. With a dedicated near-infrared telescope to observe in tandem with the optical Vera Rubin Observatory, ten or so high-redshift (z 6) gamma-ray bursts could potentially be detected every year.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rates of high-redshift GRBs depending on the nIR limiting magnitude and redshift.
Fig. 2: Prompt emission isotropic equivalent energy versus redshift of the simulated population of events with H <21.

References

  1. Salvaterra, R. et al. Nature 461, 1258–1260 (2009).

    Article  ADS  Google Scholar 

  2. Tanvir, N. R. et al. Nature 461, 1254–1257 (2009).

    Article  ADS  Google Scholar 

  3. Jiang, L. et al. Nat. Astron. 5, 256–261 (2021).

    Article  ADS  Google Scholar 

  4. Castellano, M. et al. Preprint at https://arxiv.org/abs/2207.09436 (2022).

  5. Melandri, A. et al. Astron. Astrophys. 581, A86 (2015).

    Article  Google Scholar 

  6. Ivezić, Ž. et al. Astrophys. J. 873, 111 (2019).

    Article  ADS  Google Scholar 

  7. Ghirlanda, G. et al. Mon. Not. R. Astron. Soc. 448, 2514–2524 (2015).

    Article  ADS  Google Scholar 

  8. Salvaterra, R. et al. Astrophys. J. 749, 68 (2012).

    Article  ADS  Google Scholar 

  9. Yoon, S.-C., Langer, N. & Norman, C. Astron. Astrophys. 460, 199–208 (2006).

    Article  ADS  Google Scholar 

  10. Ryan, G., van Eerten, H., Piro, L. & Troja, E. Astrophys. J. 896, 166 (2020).

    Article  ADS  Google Scholar 

  11. Gehrels, N. et al. Astrophys. J. 689, 1161–1172 (2008).

    Article  ADS  Google Scholar 

  12. Amati, L. et al. Exper. Astron. 52, 183–218 (2021).

    Article  ADS  Google Scholar 

  13. White, N. E. et al. Proc. SPIE 11821, 1182109 (2021).

    Google Scholar 

  14. Cucchiara, N. et al. Astrophys. J. 736, 7 (2011).

    Article  ADS  Google Scholar 

  15. Tanvir, N. R. et al. Astrophys. J. 865, 107 (2018).

    Article  ADS  Google Scholar 

  16. Marshall, P. et al. Preprint at https://arxiv.org/abs/1708.04058 (2017).

  17. Uslenghi, M., Falomo, R. & Fantinel, D. Proc. SPIE 9911, 99112U (2016).

    Article  ADS  Google Scholar 

  18. Sutherland, W. et al. Astron. Astrophys. 575, A25 (2015).

    Article  Google Scholar 

  19. Ghirlanda, G. et al. Astron. Astrophys. 609, A112 (2018).

    Article  Google Scholar 

  20. Covino, S. et al. Mon. Not. R. Astron. Soc. 432, 1231–1244 (2013).

    Article  ADS  Google Scholar 

  21. Salvaterra, R. J. High Energy Astrophys. 7, 35–43 (2015).

    Article  ADS  Google Scholar 

  22. Zafar, T. et al. Astron. Astrophys. 532, A143 (2011).

    Article  Google Scholar 

  23. Audard, M. et al. in Protostars and Planets VI (Beuther, H. et al. eds) 387–410 (Univ. Arizona Press, 2014).

  24. Schmidt, S. J. et al. Astrophys. J. 876, 115 (2019).

    Article  ADS  Google Scholar 

  25. Kanodia, S. et al. Astrophys. J. 925, 155 (2022).

    Article  ADS  Google Scholar 

  26. Jakobsson, P. et al. Astrophys. J. 617, L21–L24 (2004).

    Article  ADS  Google Scholar 

  27. van der Horst, A. J. et al. Astrophys. J. 699, 1087–1091 (2009).

    Article  ADS  Google Scholar 

  28. Campana, S. et al. Mon. Not. R. Astron. Soc. 421, 1697–1702 (2012).

    Article  ADS  Google Scholar 

  29. Melandri, A. et al. Mon. Not. R. Astron. Soc. 421, 1265–1272 (2012).

    Article  ADS  Google Scholar 

  30. Greiner, J. et al. Astron. Astrophys. 526, A30 (2011).

    Article  Google Scholar 

  31. Chrimes, A. A., Levan, A. J., Groot, P. J., Lyman, J. D. & Nelemans, G. Mon. Not. R. Astron. Soc. 508, 1929–1946 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S. C. thanks M. G. Bernardini, P. D’Avanzo, A. Melandri, P. Schipani, G. Tagliaferri and F. Vitali for useful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Campana.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campana, S., Ghirlanda, G., Salvaterra, R. et al. Finding high-redshift gamma-ray bursts in tandem near-infrared and optical surveys. Nat Astron 6, 1101–1104 (2022). https://doi.org/10.1038/s41550-022-01804-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01804-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing