Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Acquisition and Preservation of Remanent Magnetization in Carbonaceous Asteroids

Abstract

The solar nebula sustained a strong magnetic field that may have aided planetesimal accretion and imparted the chemical remanent magnetization (CRM) observed in some carbonaceous chondrite meteorites. The CRM thus provides a record of the magnetic field of the early Solar System at the time when carbonaceous chondrite parent bodies experienced aqueous alteration. However, the link between CRM recorded in carbonaceous chondrites and the geophysical evolution of carbonaceous chondrite parent bodies has not been thoroughly investigated. Using planetesimal thermal evolution models, we show that CRM in carbonaceous chondrites would be a natural consequence of water-rich planetesimals forming within the solar nebular magnetic field. We find that large carbonaceous chondrite parent bodies (>50 km radius), which never hosted endogenous dynamo-driven magnetic fields due to their lack of metallic cores, could have strong, present-day remanent magnetism from the ancient nebular magnetic field. In situ magnetometer measurements of large C-type asteroids could therefore validate models of carbonaceous chondrite magnetization by the solar nebular magnetic field. We suggest that 2 Pallas may be a good target for such a study.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Planetesimal thermal evolution determines the extent of aqueous alteration and thus the magnetizable volume.
Fig. 2: Formation time determines the maximum possible magnetized rock volume and magnetic moment that a planetesimal could acquire.
Fig. 3: A permeable planetesimal could have large-scale uniform magnetization.
Fig. 4: Different aqueous alteration models result in different ranges in the possible length scale of uniform remanent magnetization.
Fig. 5: A chondritic asteroid with large-scale magnetization can produce a magnetopause above the asteroid’s surface that could be detectable by spacecraft.

Data availability

The planetesimal thermal evolution computational model results that support the findings of this study and were used to make the plots are publicly available via the Open Science Framework78. Source data are provided with this paper.

Code availability

No custom code or algorithm was developed as part of this work, apart from simple routines written in the MATLAB language that were used to plot simulation data or analytical functions described in the Methods. These routines are available from the corresponding author upon reasonable request. The simulation data were produced using code from a previously published study48.

References

  1. Cournede, C. et al. An early solar system magnetic field recorded in CM chondrites. Earth Planet. Sci. Lett. 410, 62–74 (2015).

    Article  ADS  Google Scholar 

  2. Fu, R. R. et al. The fine-scale magnetic history of the Allende meteorite: implications for the structure of the solar nebula. AGU Adv. 2, e2021AV000486 (2021).

    Article  ADS  Google Scholar 

  3. Carporzen, L. et al. Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proc. Natl Acad. Sci. USA 108, 6386–6389 (2011).

    Article  ADS  Google Scholar 

  4. Rubin, A. E., Trigo-Rodríguez, J. M., Huber, H. & Wasson, J. T. Progressive aqueous alteration of CM carbonaceous chondrites. Geochim. Cosmochim. Acta 71, 2361–2382 (2007).

    Article  ADS  Google Scholar 

  5. MacPherson, G. J. & Krot, A. N. The formation of Ca-, Fe-rich silicates in reduced and oxidized CV chondrites: the roles of impact-modified porosity and permeability, and heterogeneous distribution of water ices. Meteorit. Planet. Sci. 49, 1250–1270 (2014).

    Article  ADS  Google Scholar 

  6. Stacey, F. D. & Banerjee, S. K. in The Physical Principles of Rock Magnetism Vol. 5 (eds Stacey, F. D. & Banerjee, S. K.) 128–135 (Elsevier, 1974); https://doi.org/10.1016/b978-0-444-41084-9.50013-8

  7. Stacy, F. D. Paleomagnetism of meteorites. Annu. Rev. Earth Planet. Sci. 4, 147–157 (1976).

    Article  ADS  Google Scholar 

  8. Pick, T. & Tauxe, L. Chemical remanent magnetization in synthetic magnetite. J. Geophys. Res. Solid Earth 96, 9925–9936 (1991).

    Article  Google Scholar 

  9. Weiss, B. P., Bai, X.-N. & Fu, R. R. History of the solar nebula from meteorite paleomagnetism. Sci. Adv. 7, eaba5967 (2021).

    Article  ADS  Google Scholar 

  10. Borlina, C. S. et al. Paleomagnetic evidence for a disk substructure in the early solar system. Sci. Adv. 7, eabj6928 (2021).

    Article  ADS  Google Scholar 

  11. Lowrie, W. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys. Res. Lett. 17, 159–162 (1990).

    Article  ADS  Google Scholar 

  12. Dunlop, D. J., Özdemir, Ö., Clark, D. A. & Schmidt, P. W. Time–temperature relations for the remagnetization of pyrrhotite (Fe7S8) and their use in estimating paleotemperatures. Earth Planet. Sci. Lett. 176, 107–116 (2000).

    Article  ADS  Google Scholar 

  13. Ciesla, F. J., Davison, T. M., Collins, G. S. & O’Brien, D. P. Thermal consequences of impacts in the early solar system. Meteorit. Planet. Sci. 48, 2559–2576 (2013).

    Article  ADS  Google Scholar 

  14. Desch, S. J., Kalyaan, A. & Alexander, C. M. O. The effect of Jupiter’s formation on the distribution of refractory elements and inclusions in meteorites. Astrophys. J. Suppl. Ser. 238, 11 (2018).

    Article  ADS  Google Scholar 

  15. de Leuw, S., Rubin, A. E., Schmitt, A. K. & Wasson, J. T. 53Mn–53Cr systematics of carbonates in CM chondrites: implications for the timing and duration of aqueous alteration. Geochim. Cosmochim. Acta 73, 7433–7442 (2009).

    Article  ADS  Google Scholar 

  16. Jilly, C. E. et al. 53Mn-53Cr dating of aqueously formed carbonates in the CM2 lithology of the Sutter’s Mill carbonaceous chondrite. Meteorit. Planet. Sci. 49, 2104–2117 (2014).

    Article  ADS  Google Scholar 

  17. Lee, M. R. et al. Extended chronologies of aqueous alteration in the CM2 carbonaceous chondrites: evidence from carbonates in Queen Alexandra Range 93005. Geochim. Cosmochim. Acta 92, 148–169 (2012).

    Article  ADS  Google Scholar 

  18. Sugiura, N. & Fujiya, W. Correlated accretion ages and ε54Cr of meteorite parent bodies and the evolution of the solar nebula. Meteorit. Planet. Sci. 49, 772–787 (2014).

    Article  ADS  Google Scholar 

  19. Verdier-Paoletti, M. J. et al. Testing the genetic relationship between fluid alteration and brecciation in CM chondrites. Meteorit. Planet. Sci. 54, 1692–1709 (2019).

    Article  ADS  Google Scholar 

  20. Marrocchi, Y., Bekaert, D. V. & Piani, L. Origin and abundance of water in carbonaceous asteroids. Earth Planet. Sci. Lett. 482, 23–32 (2018).

    Article  ADS  Google Scholar 

  21. Young, E. D., Ash, R. D., Philip, E. & Douglas, R. Fluid flow in chondritic parent bodies: deciphering the compositions of planetesimals. Science 286, 1331–1335 (1999).

    Article  ADS  Google Scholar 

  22. Scheinberg, A., Fu, R. R., Elkins-Tanton, L. T., Weiss, B. P. & Stanley, S. in Planetesimals: Early Differentiation and Consequences for Planets (eds Weiss, B. P. & Elkins-Tanton, L. T.) 180–203 (Cambridge Univ. Press, 2017); https://doi.org/10.1017/9781316339794.009

  23. Scheinberg A., Fu R. R., Elkins-Tanton L. T., and Weiss B. P. in Asteroids IV (eds P. Michel et al.) 533–552 (Univ. of Arizona, 2015); https://doi.org/10.2458/azu_uapress_9780816532131-ch028

  24. Bland, P. A. et al. Why aqueous alteration in asteroids was isochemical: high porosity ≠ high permeability. Earth Planet. Sci. Lett. 287, 559–568 (2009).

    Article  ADS  Google Scholar 

  25. Bland, P. A. & Travis, B. J. Giant convecting mud balls of the early solar system. Sci. Adv. 3, e1602514 (2021).

    Article  ADS  Google Scholar 

  26. Travis, B. J., Bland, P. A., Feldman, W. C. & Sykes, M. V. Hydrothermal dynamics in a CM-based model of Ceres. Meteorit. Planet. Sci. 53, 2008–2032 (2018).

    Article  ADS  Google Scholar 

  27. Young, E. D., Zhang, K. K. & Schubert, G. Conditions for pore water convection within carbonaceous chondrite parent bodies – implications for planetesimal size and heat production. Earth Planet. Sci. Lett. 213, 249–259 (2003).

    Article  ADS  Google Scholar 

  28. Ganino, C. & Libourel, G. Reduced and unstratified crust in CV chondrite parent body. Nat. Commun. 8, 261 (2017).

    Article  ADS  Google Scholar 

  29. King, A. J., Schofield, P. F. & Russell, S. S. Thermal alteration of CM carbonaceous chondrites: mineralogical changes and metamorphic temperatures. Geochim. Cosmochim. Acta 298, 167–190 (2021).

    Article  ADS  Google Scholar 

  30. King, A. J. et al. The alteration history of the Jbilet Winselwan CM carbonaceous chondrite: an analog for C-type asteroid sample return. Meteorit. Planet. Sci. 54, 521–543 (2019).

    ADS  Google Scholar 

  31. Tonui, E. et al. Petrographic, chemical and spectroscopic evidence for thermal metamorphism in carbonaceous chondrites I: CI and CM chondrites. Geochim. Cosmochim. Acta 126, 284–306 (2014).

    Article  ADS  Google Scholar 

  32. Nakamura, T. Post-hydration thermal metamorphism of carbonaceous chondrites. J. Mineral. Petrol. Sci. 100, 260–272 (2005).

    Article  Google Scholar 

  33. Neveu, M., Desch, S. J. & Castillo-Rogez, J. C. Core cracking and hydrothermal circulation can profoundly affect Ceres’ geophysical evolution. J. Geophys. Res. Planets 120, 123–154 (2015).

    Article  ADS  Google Scholar 

  34. Ganino, C. & Libourel, G. Fumarolic-like activity on carbonaceous chondrite parent body. Sci. Adv. 6, eabb1166 (2020).

    Article  ADS  Google Scholar 

  35. Jamieson, J. W. et al. Sulfide geochronology along the Endeavour segment of the Juan de Fuca Ridge. Geochem., Geophys. Geosystems 14, 2084–2099 (2013).

    Article  ADS  Google Scholar 

  36. Fujii, M., Sato, H., Togawa, E., Shimada, K. & Ishibashi, J. Seafloor hydrothermal alteration affecting magnetic properties of abyssal basaltic rocks: insights from back-arc lavas of the Okinawa Trough. Earth, Planets Sp. 70, 196 (2018).

    Article  ADS  Google Scholar 

  37. Kaplan, H. H. et al. Bright carbonate veins on asteroid (101955) Bennu: implications for aqueous alteration history. Science 370, eabc3557 (2020).

    Article  ADS  Google Scholar 

  38. Marsset, M. et al. The violent collisional history of aqueously evolved (2) Pallas. Nat. Astron. https://doi.org/10.1038/s41550-019-1007-5 (2020).

  39. Schmidt, B. E. & Castillo-Rogez, J. C. Water, heat, bombardment: the evolution and current state of (2) Pallas. Icarus 218, 478–488 (2012).

    Article  ADS  Google Scholar 

  40. McSween, H. Y. et al. Composition of the Rheasilvia basin, a window into Vesta’s interior. J. Geophys. Res. Planets 118, 335–346 (2013).

    Article  ADS  Google Scholar 

  41. Richardson, J. E. & Abramov, O. Modeling the formation of the lunar upper megaregolith layer. Planet. Sci. J. 1, 2 (2020).

    Article  Google Scholar 

  42. Larson, H. P., Feierberg, M. A. & Lebofsky, L. A. The composition of asteroid 2 Pallas and its relation to primitive meteorites. Icarus 56, 398–408 (1983).

    Article  ADS  Google Scholar 

  43. Macke, R. J., Consolmagno, G. J. & Britt, D. T. Density, porosity, and magnetic susceptibility of carbonaceous chondrites. Meteorit. Planet. Sci. 46, 1842–1862 (2011).

    Article  ADS  Google Scholar 

  44. Park, R. S. et al. A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature 537, 515–517 (2016).

    Article  ADS  Google Scholar 

  45. Castillo-Rogez, J. C. & Schmidt, B. E. Geophysical evolution of the Themis family parent body. Geophys. Res. Lett. 37, L10202 (2010).

    Article  ADS  Google Scholar 

  46. Castillo-Rogez, J. C. & McCord, T. B. Ceres’ evolution and present state constrained by shape data. Icarus 205, 443–459 (2010).

    Article  ADS  Google Scholar 

  47. Castillo-Rogez, J. et al. 26Al decay: heat production and a revised age for Iapetus. Icarus 204, 658–662 (2009).

    Article  ADS  Google Scholar 

  48. Castillo-Rogez, J. C. et al. Iapetus’ geophysics: rotation rate, shape, and equatorial ridge. Icarus 190, 179–202 (2007).

    Article  ADS  Google Scholar 

  49. Boss, A. P. Evolution of the solar nebula. II. Thermal structure during nebula formation. Astrophys. J. 417, 351 (1993).

    Article  ADS  Google Scholar 

  50. Wardle, M. Magnetic fields in protoplanetary disks. Astrophys. Space Sci. 311, 35–45 (2007).

    Article  ADS  Google Scholar 

  51. Johansen, A. & Lambrechts, M. Forming planets via pebble accretion. Annu. Rev. Earth Planet. Sci. 45, 359–387 (2017).

    Article  ADS  Google Scholar 

  52. Oran, R., Weiss, B. P. & Cohen, O. Were chondrites magnetized by the early solar wind? Earth Planet. Sci. Lett. 492, 222–231 (2018).

    Article  ADS  Google Scholar 

  53. Cochrane, C. J. et al. Single- and multi-pass magnetometric subsurface ocean detection and characterization in icy worlds using principal component analysis (PCA): application to Triton. Earth Space Sci. 9, e2021EA002034 (2022).

    Article  ADS  Google Scholar 

  54. Oran, R. et al. Maximum energies of trapped particles around magnetized planets and small bodies. Geophys. Res. Lett. 49, e2021GL097014 (2022).

    Article  ADS  Google Scholar 

  55. Blanco-Cano, X. & Omidi, N. Hybrid simulations of solar wind interaction with magnetized asteroids: Comparison with Galileo observations near Gaspra and Ida. J. Geophys. Res. Space Phys. 108, 1216 (2003).

    Article  ADS  Google Scholar 

  56. Fatemi, S., Poppe, A. R., Delory, G. T. & Farrell, W. M. AMITIS: a 3D GPU-based hybrid-PIC model for space and plasma physics. J. Phys. Conf. Ser. 837, 012017 (2017).

    Article  Google Scholar 

  57. Corrigan, C. M. et al. The porosity and permeability of chondritic meteorites and interplanetary dust particles. Meteorit. Planet. Sci. 32, 509–515 (1997).

    Article  ADS  Google Scholar 

  58. Travis, B. J. & Schubert, G. Hydrothermal convection in carbonaceous chondrite parent bodies. Earth Planet. Sci. Lett. 240, 234–250 (2005).

    Article  ADS  Google Scholar 

  59. Hutchison, R., Pillinger, C., Turner, G., Russell, S. & Young, E. D. The hydrology of carbonaceous chondrite parent bodies and the evolution of planet progenitors. Phil. Trans. R. Soc. Lond. A 359, 2095–2110 (2001).

    Article  Google Scholar 

  60. Grimm, R. E. & Mcsween, H. Y. Water and the thermal evolution of carbonaceous chondrite parent bodies. Icarus 82, 244–280 (1989).

    Article  ADS  Google Scholar 

  61. Morbidelli, A., Bottke, W. F., Nesvorný, D. & Levison, H. F. Asteroids were born big. Icarus 204, 558–573 (2009).

    Article  ADS  Google Scholar 

  62. Maurel, C. et al. Meteorite evidence for partial differentiation and protracted accretion of planetesimals. Sci. Adv. 6, eaba1303 (2020).

    Article  ADS  Google Scholar 

  63. Elkins-Tanton, L. T., Weiss, B. P. & Zuber, M. T. Chondrites as samples of differentiated planetesimals. Earth Planet. Sci. Lett. 305, 1–10 (2011).

    Article  ADS  Google Scholar 

  64. Fu, R. R. & Elkins-Tanton, L. T. The fate of magmas in planetesimals and the retention of primitive chondritic crusts. Earth Planet. Sci. Lett. 390, 128–137 (2014).

    Article  ADS  Google Scholar 

  65. Bryson, J. F. J., Neufeld, J. A. & Nimmo, F. Constraints on asteroid magnetic field evolution and the radii of meteorite parent bodies from thermal modelling. Earth Planet. Sci. Lett. 521, 68–78 (2019).

    Article  ADS  Google Scholar 

  66. Fujiya, W., Sugiura, N., Sano, Y. & Hiyagon, H. Mn–Cr ages of dolomites in CI chondrites and the Tagish Lake ungrouped carbonaceous chondrite. Earth Planet. Sci. Lett. 362, 130–142 (2013).

    Article  ADS  Google Scholar 

  67. Suttle, M. D., King, A. J., Schofield, P. F., Bates, H. & Russell, S. S. The aqueous alteration of CM chondrites, a review. Geochim. Cosmochim. Acta 299, 219–256 (2021).

    Article  ADS  Google Scholar 

  68. Fukuda, K. et al. A temporal shift of chondrule generation from the inner to outer Solar System inferred from oxygen isotopes and Al-Mg chronology of chondrules from primitive CM and CO chondrites. Geochim. Cosmochim. Acta 322, 194–226 (2022).

    Article  ADS  Google Scholar 

  69. Nagashima, K., Krot, A. N. & Komatsu, M. 26Al–26Mg systematics in chondrules from Kaba and Yamato 980145 CV3 carbonaceous chondrites. Geochim. Cosmochim. Acta 201, 303–319 (2017).

    Article  ADS  Google Scholar 

  70. Fu, R. R. & Weiss, B. P. Detrital remanent magnetization in the solar nebula. J. Geophys. Res. Planets 117, E02003 (2012).

    Article  ADS  Google Scholar 

  71. Biersteker, J. B. et al. Implications of Philae magnetometry measurements at comet 67P/Churyumov–Gerasimenko for the nebular field of the outer solar system. Astrophys. J. 875, 39 (2019).

    Article  ADS  Google Scholar 

  72. O'Brien, T. et al. Arrival and magnetization of carbonaceous chondrites in the asteroid belt before 4562 million years ago. Commun. Earth Environ. 1, 54 (2020).

    Article  ADS  Google Scholar 

  73. Hercik, D. et al. Magnetic properties of asteroid (162173) Ryugu. J. Geophys. Res. 125, e06035 (2020).

    Article  Google Scholar 

  74. Yada, T. et al. Preliminary analysis of the Hayabusa2 samples returned from C-type asteroid Ryugu. Nat. Astron.https://doi.org/10.1038/s41550-021-01550-6 (2021).

  75. Sridhar, S., Bryson, J. F. J., King, A. J. & Harrison, R. J. Constraints on the ice composition of carbonaceous chondrites from their magnetic mineralogy. Earth Planet. Sci. Lett. 576, 117243 (2021).

    Article  Google Scholar 

  76. Villarreal, M. N. Understanding the Interiors of Vesta and Ceres Through Their Interactions with the Solar Wind (Univ. California Los Angeles, 2018).

  77. Castillo-Rogez, J. et al. Science drivers for the future exploration of Ceres: from solar system evolution to ocean world science. Planet. Sci. J. 3, 64 (2022).

    Article  Google Scholar 

  78. Courville, S. Courville_etal_2022_planetesimal_thermal_models. Open Science Framework https://doi.org/10.17605/OSF.IO/WAHN2 (2022).

  79. Scheinberg, A., Elkins-Tanton, L. T., Schubert, G. & Bercovici, D. Core solidification and dynamo evolution in a mantle-stripped planetesimal. J. Geophys. Res. Planets 121, 2–20 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Rubin for fruitful discussions about the alteration of CM chondrites. B.P.W., R.O. and L.T.E.-T. thank the NASA Discovery Program (grant number NNM16AA09C) for support. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).

Author information

Authors and Affiliations

Authors

Contributions

S.W.C. and J.G.O. designed the modelling study. S.W.C. performed the model analysis, created the figures and wrote the manuscript. J.C.C.-R. provided the thermal evolution model data. R.O. provided the methodology for the magnetopause calculation. B.P.W. and R.R.F. guided discussion of the magnetization within chondrites. L.T.E.-T. guided discussion of planetesimal formation. All authors provided comments and edits during the drafting of the manuscript.

Corresponding author

Correspondence to Samuel W. Courville.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Clara Maurel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Magnetization preservation for inner solar system nebula dissipation time.

Maximum magnetized volume percent for planetesimals with 40 vol% water ice that formed in the inner solar system where the solar nebula dissipated at 3.9 Myr after CAIs and assuming an unblocking temperature of (a) 550 K and (b) 850 K, which correspond to the magnetic carriers pyrrhotite and magnetite respectively. Quicker nebula dissipation leads to fewer planetesimals that could be magnetized. Compared to the nominal case in Fig. 2, the range of time that can lead to complete magnetization has been greatly reduced if magnetite is the carrier and eliminated if pyrrhotite is the carrier.

Source data

Extended Data Fig. 2 Magnetization preservation for planetesimals that accreted less water ice.

Maximum magnetized volume percent for planetesimals with 10 vol% water ice that formed in the outer solar system where the solar nebula dissipated at 4.8 Myr after CAIs and assuming an unblocking temperature of (a) 550 K and (b) 850 K, which corresponds to the magnetic carrier being pyrrhotite and magnetite respectively. Because there is less water ice, there is more radiogenic heating. More radiogenic heating means it is easier to reach the unblocking temperature(s) and erase magnetization. Compared to the nominal case in Fig. 2, the range in time that allows for complete magnetization assuming magnetite is the magnetic carrier has been narrowed. No times allow complete magnetization assuming pyrrhotite is the carrier.

Source data

Extended Data Fig. 3 Mean magnetization scale as a function of the exhalation alteration parameters, assuming a magnetite-like magnetic carrier.

The mean magnetization scale is the average of the magnetization scale values for every planetesimal model run within a given bin of parameter values. We generated this plot from 50,000 random samples of the parameter space. The mean magnetization scale for the entire set of models is 30 km.

Source data

Source data

Source Data Fig. 1

Table of values that produced Fig. 1's plotted contours.

Source Data Fig. 2

Table of values that produced Fig. 2's plotted contours.

Source Data Fig. 3

Table of values that produced Fig. 3's plotted contours.

Source Data Fig. 5

List of values that produced Fig. 5's curves.

Source Data Extended Data Fig. 1

Table of values that produced ED Fig. 1's contours.

Source Data Extended Data Fig. 2

Table of values that produced ED Fig. 2's contours.

Source Data Extended Data Fig. 3

Unprocessed set of 50,000 magnetization scale model results.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Courville, S.W., O’Rourke, J.G., Castillo-Rogez, J.C. et al. Acquisition and Preservation of Remanent Magnetization in Carbonaceous Asteroids. Nat Astron (2022). https://doi.org/10.1038/s41550-022-01802-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-022-01802-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing