Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Discovery of post-mass-transfer helium-burning red giants using asteroseismology

Abstract

A star expands to become a red giant when it has fused all the hydrogen in its core into helium. If the star is in a binary system, its envelope can overflow onto its companion or be ejected into space, leaving a hot core and potentially forming a subdwarf B star1,2,3. However, most red giants that have partially transferred envelopes in this way remain cool on the surface and are almost indistinguishable from those that have not. Among ~7,000 helium-burning red giants observed by NASA’s Kepler mission, we use asteroseismology to identify two classes of stars that must have undergone considerable mass loss, presumably due to stripping in binary interactions. The first class comprises about seven underluminous stars with smaller helium-burning cores than their single-star counterparts. Theoretical models show that these small cores imply the stars had much larger masses when ascending the red giant branch. The second class consists of 32 red giants with masses down to 0.5 M, whose implied ages would exceed the age of the universe had no mass loss occurred. The numbers are consistent with binary statistics, and our results open up new possibilities to study the evolution of post-mass-transfer binary systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fundamental parameters of CHeB stars in the Kepler red giant sample.
Fig. 2: [M/H] versus mass for CHeB stars in the Kepler red giant sample.
Fig. 3: Mass distributions of low-luminosity RGB (νmax > 80 μHz) and CHeB stars in the Kepler red giant sample (Methods).

Similar content being viewed by others

Data availability

We made use of publicly available data in this work. Kepler data are available from the MAST portal at https://archive.stsci.edu/access-mast-data, APOGEE data at https://www.sdss.org/dr16/, LAMOST data at http://dr5.lamost.org/v3/doc/vac and https://github.com/hypergravity/paperdata and Gaia data at https://gea.esac.esa.int/archive/. The data needed to reproduce this work are available at GitHub (https://github.com/parallelpro/Yaguang_stripped_rg_repo). All other data are available from the corresponding author upon reasonable request.

Code availability

This work is made possible by the following open-source software: NumPy130, SciPy131, Matplotlib132, Astropy133,134, Pandas135, MESA88,89,90,91,92, MESA SDK136, GYRE93, pySYD82, Lightkurve137, EchellePlotter (https://github.com/9yifanchen9/EchellePy) and ISOCLASSIFY119,120. The scripts used in this work is available at a curated GitHub repository (https://github.com/parallelpro/Yaguang_stripped_rg_repo).

References

  1. Heber, U. Hot subluminous stars. Publ. Astron. Soc. Pac. 128, 082001 (2016).

    Article  ADS  Google Scholar 

  2. Byrne, C. M., Stanway, E. R. & Eldridge, J. J. Binary evolution pathways of blue large-amplitude pulsators. Mon. Not. R. Astron. Soc. 507, 621–631 (2021).

    Article  ADS  Google Scholar 

  3. Lynas-Gray, A. E. Asteroseismic observations of hot subdwarfs. Front. Astron. Space Sci. 8, 576623 (2021).

    Article  Google Scholar 

  4. Reimers, D. Circumstellar absorption lines and mass loss from red giants. Mem. Soc. R. Sci. Liege 8, 369–382 (1975).

    ADS  Google Scholar 

  5. Schröder, K. P. & Cuntz, M. A new version of Reimers’ law of mass loss based on a physical approach. Astrophys. J. 630, L73–L76 (2005).

    Article  ADS  Google Scholar 

  6. Yu, J. et al. Asteroseismology of luminous red giants with Kepler—II. Dependence of mass-loss on pulsations and radiation. Mon. Not. R. Astron. Soc. 501, 5135–5148 (2021).

    Article  ADS  Google Scholar 

  7. Miglio, A. et al. Age dissection of the Milky Way discs: red giants in the Kepler field. Astron. Astrophys. 645, A85 (2021).

    Article  Google Scholar 

  8. Miglio, A. et al. Asteroseismology of old open clusters with Kepler: direct estimate of the integrated red giant branch mass-loss in NGC 6791 and 6819. Mon. Not. R. Astron. Soc. 419, 2077–2088 (2012).

    Article  ADS  Google Scholar 

  9. Stello, D. et al. The K2 M67 Study: revisiting old friends with K2 reveals oscillating red giants in the open cluster M67. Astrophys. J. 832, 133 (2016).

    Article  ADS  Google Scholar 

  10. Handberg, R. et al. NGC 6819: testing the asteroseismic mass scale, mass loss and evidence for products of non-standard evolution. Mon. Not. R. Astron. Soc. 472, 979–997 (2017).

    Article  ADS  Google Scholar 

  11. McDonald, I. & Zijlstra, A. A. Mass-loss on the red giant branch: the value and metallicity dependence of Reimers’ η in globular clusters. Mon. Not. R. Astron. Soc. 448, 502–521 (2015).

    Article  ADS  Google Scholar 

  12. Lebzelter, T. & Wood, P. R. Long period variables and mass loss in the globular clusters NGC 362 and NGC 2808. Astron. Astrophys. 529, A137 (2011).

    Article  ADS  Google Scholar 

  13. Salaris, M., Cassisi, S. & Pietrinferni, A. On the red giant branch mass loss in 47 Tucanae: constraints from the horizontal branch morphology. Astron. Astrophys. 590, A64 (2016).

    Article  ADS  Google Scholar 

  14. An, D., Pinsonneault, M. H., Terndrup, D. M. & Chung, C. Comparison of the asteroseismic mass scale of red clump giants with photometric mass estimates. Astrophys. J. 879, 81 (2019).

    Article  ADS  Google Scholar 

  15. Han, Z.-W., Ge, H.-W., Chen, X.-F. & Chen, H.-L. Binary population synthesis. Res. Astron. Astrophys. 20, 161 (2020).

    Article  ADS  Google Scholar 

  16. Bergeron, P., Saffer, R. A. & Liebert, J. A spectroscopic determination of the mass distribution of DA white dwarfs. Astrophys. J. 394, 228–247 (1992).

    Article  ADS  Google Scholar 

  17. Liebert, J., Bergeron, P. & Holberg, J. B. The formation rate and mass and luminosity functions of DA white dwarfs from the Palomar Green Survey. Astrophys. J. Suppl. Ser. 156, 47–68 (2005).

    Article  ADS  Google Scholar 

  18. Brown, W. R., Kilic, M., Allende Prieto, C., Gianninas, A. & Kenyon, S. J. The ELM Survey. V. Merging massive white dwarf binaries. Astrophys. J. 769, 66 (2013).

    Article  ADS  Google Scholar 

  19. Han, Z., Podsiadlowski, P., Maxted, P. F. L., Marsh, T. R. & Ivanova, N. The origin of subdwarf B stars—I. The formation channels. Mon. Not. R. Astron. Soc. 336, 449–466 (2002).

    Article  ADS  Google Scholar 

  20. Hu, H. et al. A seismic approach to testing different formation channels of subdwarf B stars. Astron. Astrophys. 490, 243–252 (2008).

    Article  ADS  Google Scholar 

  21. Maxted, P. F. L., Heber, U., Marsh, T. R. & North, R. C. The binary fraction of extreme horizontal branch stars. Mon. Not. R. Astron. Soc. 326, 1391–1402 (2001).

    Article  ADS  Google Scholar 

  22. Napiwotzki, R. et al. Close binary EHB stars from SPY. Astrophys. Space Sci. 291, 321–328 (2004).

    Article  ADS  Google Scholar 

  23. Copperwheat, C. M., Morales-Rueda, L., Marsh, T. R., Maxted, P. F. L. & Heber, U. Radial-velocity measurements of subdwarf B stars. Mon. Not. R. Astron. Soc. 415, 1381–1395 (2011).

    Article  ADS  Google Scholar 

  24. El-Badry, K. & Quataert, E. A stripped-companion origin for Be stars: clues from the putative black holes HR 6819 and LB-1. Mon. Not. R. Astron. Soc. 502, 3436–3455 (2021).

    Article  ADS  Google Scholar 

  25. Shenar, T. et al. The ‘hidden’ companion in LB-1 unveiled by spectral disentangling. Astron. Astrophys. 639, L6 (2020).

    Article  ADS  Google Scholar 

  26. Irrgang, A., Geier, S., Kreuzer, S., Pelisoli, I. & Heber, U. A stripped helium star in the potential black hole binary LB-1. Astron. Astrophys. 633, L5 (2020).

    Article  ADS  Google Scholar 

  27. Brogaard, K., Arentoft, T., Jessen-Hansen, J. & Miglio, A. Asteroseismology of overmassive, undermassive, and potential past members of the open cluster NGC 6791. Mon. Not. R. Astron. Soc. 507, 496–509 (2021).

    Article  ADS  Google Scholar 

  28. Ulrich, R. K. Determination of stellar ages from asteroseismology. Astrophys. J. 306, L37 (1986).

    Article  ADS  Google Scholar 

  29. Brown, T. M., Gilliland, R. L., Noyes, R. W. & Ramsey, L. W. Detection of possible p-mode oscillations on Procyon. Astrophys. J. 368, 599–609 (1991).

    Article  ADS  Google Scholar 

  30. Kjeldsen, H. & Bedding, T. R. Amplitudes of stellar oscillations: the implications for asteroseismology. Astron. Astrophys. 293, 87–106 (1995).

    ADS  Google Scholar 

  31. Li, Y. et al. Testing the intrinsic scatter of the asteroseismic scaling relations with Kepler red giants. Mon. Not. R. Astron. Soc. 501, 3162–3172 (2021).

    Article  ADS  Google Scholar 

  32. Aizenman, M., Smeyers, P. & Weigert, A. Avoided crossing of modes of non-radial stellar oscillations. Astron. Astrophys. 58, 41–46 (1977).

    ADS  Google Scholar 

  33. Christensen-Dalsgaard, J., Bedding, T. R. & Kjeldsen, H. Modeling solar-like oscillations in eta Bootis. Astrophys. J. 443, L29 (1995).

    Article  ADS  Google Scholar 

  34. Deheuvels, S. et al. Seismic and spectroscopic characterization of the solar-like pulsating CoRoT target HD 49385. Astron. Astrophys. 515, A87 (2010).

    Article  Google Scholar 

  35. Benomar, O. et al. Properties of oscillation modes in subgiant stars observed by Kepler. Astrophys. J. 767, 158 (2013).

    Article  ADS  Google Scholar 

  36. Dupret, M. A. et al. Theoretical amplitudes and lifetimes of non-radial solar-like oscillations in red giants. Astron. Astrophys. 506, 57–67 (2009).

    Article  ADS  Google Scholar 

  37. Bedding, T. R. et al. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars. Nature 471, 608–611 (2011).

    Article  ADS  Google Scholar 

  38. Huber, D. et al. Asteroseismology of red giants from the first four months of Kepler data: global oscillation parameters for 800 stars. Astrophys. J. 723, 1607–1617 (2010).

    Article  ADS  Google Scholar 

  39. Yu, J. et al. Asteroseismology of 16,000 Kepler red giants: global oscillation parameters, masses, and radii. Astrophys. J. Suppl. Ser. 236, 42 (2018).

    Article  ADS  Google Scholar 

  40. Sweigart, A. V., Greggio, L. & Renzini, A. The development of the red giant branch. II. Astrophysical properties. Astrophys. J. 364, 527–539 (1990).

    Article  ADS  Google Scholar 

  41. Montalbán, J. et al. Testing convective-core overshooting using period spacings of dipole modes in red giants. Astrophys. J. 766, 118 (2013).

    Article  ADS  Google Scholar 

  42. Girardi, L. Red clump stars. Annu. Rev. Astron. Astrophys. 54, 95–133 (2016).

    Article  ADS  Google Scholar 

  43. Planck Collaboration et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

  44. Mosser, B. et al. Characterization of the power excess of solar-like oscillations in red giants with Kepler. Astron. Astrophys. 537, A30 (2012).

    Article  Google Scholar 

  45. Elsworth, Y. et al. Insights from the APOKASC determination of the evolutionary state of red-giant stars by consolidation of different methods. Mon. Not. R. Astron. Soc. 489, 4641–4657 (2019).

    Article  ADS  Google Scholar 

  46. Gaulme, P. et al. Active red giants: close binaries versus single rapid rotators. Astron. Astrophys. 639, A63 (2020).

    Article  Google Scholar 

  47. Schönberg, M. & Chandrasekhar, S. On the evolution of the main-sequence stars. Astrophys. J. 96, 161–172 (1942).

    Article  ADS  Google Scholar 

  48. Kumar, Y. B. et al. Discovery of ubiquitous lithium production in low-mass stars. Nat. Astron. 4, 1059–1063 (2020).

    Article  ADS  Google Scholar 

  49. Deepak & Lambert, D. L. Lithium abundances and asteroseismology of red giants: understanding the evolution of lithium in giants based on asteroseismic parameters. Mon. Not. R. Astron. Soc. 505, 642–648 (2021).

  50. Martell, S. L. et al. The GALAH survey: a census of lithium-rich giant stars. Mon. Not. R. Astron. Soc. 505, 5340–5355 (2021).

    ADS  Google Scholar 

  51. Yan, H.-L. et al. Most lithium-rich low-mass evolved stars revealed as red clump stars by asteroseismology and spectroscopy. Nat. Astron. 5, 86–93 (2021).

    Article  ADS  Google Scholar 

  52. Silva Aguirre, V. et al. Old puzzle, new insights: a lithium-rich giant quietly burning helium in its core. Astrophys. J. 784, L16 (2014).

    Article  ADS  Google Scholar 

  53. Casey, A. R. et al. Tidal interactions between binary stars can drive lithium production in low-mass red giants. Astrophys. J. 880, 125 (2019).

    Article  ADS  Google Scholar 

  54. Zhang, X., Jeffery, C. S., Li, Y. & Bi, S. Population synthesis of helium white dwarf–red giant star mergers and the formation of lithium-rich giants and carbon stars. Astrophys. J. 889, 33 (2020).

    Article  ADS  Google Scholar 

  55. Bland-Hawthorn, J. & Gerhard, O. The Galaxy in context: structural, kinematic, and integrated properties. Annu. Rev. Astron. Astrophys. 54, 529–596 (2016).

    Article  ADS  Google Scholar 

  56. Chiappini, C. et al. Young [α/Fe]-enhanced stars discovered by CoRoT and APOGEE: what is their origin? Astron. Astrophys. 576, L12 (2015).

    Article  ADS  Google Scholar 

  57. Martig, M. et al. Young α-enriched giant stars in the solar neighbourhood. Mon. Not. R. Astron. Soc. 451, 2230–2243 (2015).

    Article  ADS  Google Scholar 

  58. Jofré, P. et al. Cannibals in the thick disk: the young α-rich stars as evolved blue stragglers. Astron. Astrophys. 595, A60 (2016).

    Article  Google Scholar 

  59. Yong, D. et al. GRACES observations of young [α/Fe]-rich stars. Mon. Not. R. Astron. Soc. 459, 487–495 (2016).

    Article  ADS  Google Scholar 

  60. Hekker, S. & Johnson, J. A. Origin of α-rich young stars: clues from C, N, and O. Mon. Not. R. Astron. Soc. 487, 4343–4354 (2019).

    Article  ADS  Google Scholar 

  61. Zhang, M. et al. Most “young” α-rich stars have high masses but are actually old. Astrophys. J. 922, 145 (2021).

    Article  ADS  Google Scholar 

  62. Sharma, S. et al. The GALAH Survey: dependence of elemental abundances on age and metallicity for stars in the Galactic disc. Mon. Not. R. Astron. Soc. 510, 734–752 (2021).

    Article  ADS  Google Scholar 

  63. Hayden, M. R. et al. The GALAH Survey: chemical clocks. Preprint at https://arxiv.org/abs/2011.13745 (2020).

  64. Rui, N. Z. & Fuller, J. Asteroseismic fingerprints of stellar mergers. Mon. Not. R. Astron. Soc. 508, 1618–1631 (2021).

    Article  ADS  Google Scholar 

  65. Deheuvels, S., Ballot, J., Gehan, C. & Mosser, B. Seismic signature of electron degeneracy in the core of red giants: hints for mass transfer between close red-giant companions. Astron. Astrophys. 659, A106 (2022).

    Article  ADS  Google Scholar 

  66. Aerts, C., Mathis, S. & Rogers, T. M. Angular momentum transport in stellar interiors. Annu. Rev. Astron. Astrophys. 57, 35–78 (2019).

    Article  ADS  Google Scholar 

  67. Huber, D. et al. Automated extraction of oscillation parameters for Kepler observations of solar-type stars. Commun. Asteroseismol. 160, 74–91 (2009).

    Article  ADS  Google Scholar 

  68. Stello, D., Bruntt, H., Preston, H. & Buzasi, D. Oscillating K giants with the WIRE satellite: determination of their asteroseismic masses. Astrophys. J. 674, L53 (2008).

    Article  ADS  Google Scholar 

  69. Kallinger, T. et al. Oscillating red giants in the CoRoT exofield: asteroseismic mass and radius determination. Astron. Astrophys. 509, A77 (2010).

    Article  Google Scholar 

  70. Chaplin, W. J. & Miglio, A. Asteroseismology of solar-type and red-giant stars. Annu. Rev. Astron. Astrophys. 51, 353–392 (2013).

    Article  ADS  Google Scholar 

  71. Hekker, S. & Christensen-Dalsgaard, J. Giant star seismology. Astron. Astrophys. Rev. 25, 1 (2017).

    Article  ADS  Google Scholar 

  72. Basu, S. & Hekker, S. Unveiling the structure and dynamics of red giants with asteroseismology. Front. Astron. Space Sci. 7, 44 (2020).

    Article  ADS  Google Scholar 

  73. Hekker, S. Scaling relations for solar-like oscillations: a review. Front. Astron. Space Sci. 7, 3 (2020).

    Article  ADS  Google Scholar 

  74. Hon, M., Stello, D. & Yu, J. Deep learning classification in asteroseismology. Mon. Not. R. Astron. Soc. 469, 4578–4583 (2017).

    Article  ADS  Google Scholar 

  75. Kallinger, T. et al. Evolutionary influences on the structure of red-giant acoustic oscillation spectra from 600 d of Kepler observations. Astron. Astrophys. 541, A51 (2012).

    Article  Google Scholar 

  76. Stello, D. et al. Asteroseismic classification of stellar populations among 13,000 red giants observed by Kepler. Astrophys. J. 765, L41 (2013).

    Article  ADS  Google Scholar 

  77. Mosser, B. et al. Mixed modes in red giants: a window on stellar evolution. Astron. Astrophys. 572, L5 (2014).

    Article  ADS  Google Scholar 

  78. Vrard, M., Mosser, B. & Samadi, R. Period spacings in red giants. II. Automated measurement. Astron. Astrophys. 588, A87 (2016).

    Article  ADS  Google Scholar 

  79. Abdurro’uf et al. The seventeenth data release of the Sloan Digital Sky Surveys: complete release of MaNGA, MaStar and APOGEE-2 data. Astrophys. J. Suppl. Ser. 259, 35 (2022).

  80. Xiang, M. et al. Abundance estimates for 16 elements in 6 million stars from LAMOST DR5 low-resolution spectra. Astrophys. J. Suppl. Ser. 245, 34 (2019).

    Article  ADS  Google Scholar 

  81. Zhang, B. et al. Self-consistent stellar radial velocities from LAMOST Medium-Resolution Survey DR7. Astrophys. J. Suppl. Ser. 256, 14 (2021).

    Article  ADS  Google Scholar 

  82. Chontos, A., Huber, D., Sayeed, M. & Yamsiri, P. pySYD: automated measurements of global asteroseismic parameters. Preprint at https://arxiv.org/abs/2108.00582 (2021).

  83. Li, Y. et al. Asteroseismology of 36 Kepler subgiants—I. Oscillation frequencies, linewidths, and amplitudes. Mon. Not. R. Astron. Soc. 495, 2363–2386 (2020).

    Article  ADS  Google Scholar 

  84. White, T. R. et al. Calculating asteroseismic diagrams for solar-like oscillations. Astrophys. J. 743, 161 (2011).

    Article  ADS  Google Scholar 

  85. Sharma, S., Stello, D., Bland-Hawthorn, J., Huber, D. & Bedding, T. R. Stellar population synthesis based modeling of the Milky Way using asteroseismology of 13,000 Kepler red giants. Astrophys. J. 822, 15 (2016).

    Article  ADS  Google Scholar 

  86. Vrard, M., Mosser, B. & Samadi, R. Period spacings in red giants. II. Automated measurement. Astron. Astrophys. 588, A87 (2016).

    Article  ADS  Google Scholar 

  87. Mosser, B. et al. Period spacings in red giants IV. Toward a complete description of the mixed-mode pattern. Astron. Astrophys. 618, A109 (2018).

    Article  Google Scholar 

  88. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3 (2011).

    Article  ADS  Google Scholar 

  89. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. Ser. 208, 4 (2013).

    Article  ADS  Google Scholar 

  90. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): binaries, pulsations, and explosions. Astrophys. J. Suppl. Ser. 220, 15 (2015).

    Article  ADS  Google Scholar 

  91. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): convective boundaries, element diffusion, and massive star explosions. Astrophys. J. Suppl. Ser. 234, 34 (2018).

    Article  ADS  Google Scholar 

  92. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): pulsating variable stars, rotation, convective boundaries, and energy conservation. Astrophys. J. Suppl. Ser. 243, 10 (2019).

    Article  ADS  Google Scholar 

  93. Townsend, R. H. D. & Teitler, S. A. GYRE: an open-source stellar oscillation code based on a new Magnus Multiple Shooting scheme. Mon. Not. R. Astron. Soc. 435, 3406–3418 (2013).

    Article  ADS  Google Scholar 

  94. Henyey, L., Vardya, M. S. & Bodenheimer, P. Studies in stellar evolution. III. The calculation of model envelopes. Astrophys. J. 142, 841–854 (1965).

    Article  ADS  Google Scholar 

  95. Murphy, S. J., Joyce, M., Bedding, T. R., White, T. R. & Kama, M. A precise asteroseismic age and metallicity for HD 139614: a pre-main-sequence star with a protoplanetary disc in Upper Centaurus–Lupus. Mon. Not. R. Astron. Soc. 502, 1633–1646 (2021).

    Article  ADS  Google Scholar 

  96. Molnár, L., Joyce, M. & Kiss, L. L. Stellar evolution in real time: models consistent with the direct observation of a thermal pulse in T Ursae Minoris. Astrophys. J. 879, 62 (2019).

    Article  ADS  Google Scholar 

  97. Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    Article  ADS  Google Scholar 

  98. Cyburt, R. H. et al. The JINA REACLIB database: its recent updates and impact on type-I X-ray bursts. Astrophys. J. Suppl. Ser. 189, 240–252 (2010).

    Article  ADS  Google Scholar 

  99. Eddington, A. S. The Internal Constitution of the Stars (University Press, 1926).

  100. Rogers, F. J. & Nayfonov, A. Updated and expanded OPAL equation-of-state tables: implications for helioseismology. Astrophys. J. 576, 1064–1074 (2002).

    Article  ADS  Google Scholar 

  101. Saumon, D., Chabrier, G. & van Horn, H. M. An equation of state for low-mass stars and giant planets. Astrophys. J. Suppl. Ser. 99, 713–741 (1995).

    Article  ADS  Google Scholar 

  102. Pols, O. R., Tout, C. A., Eggleton, P. P. & Han, Z. Approximate input physics for stellar modelling. Mon. Not. R. Astron. Soc. 274, 964–974 (1995).

    Article  ADS  Google Scholar 

  103. Timmes, F. X. & Swesty, F. D. The accuracy, consistency, and speed of an electron–positron equation of state based on table interpolation of the Helmholtz free energy. Astrophys. J. Suppl. Ser. 126, 501–516 (2000).

    Article  ADS  Google Scholar 

  104. Potekhin, A. Y. & Chabrier, G. Thermodynamic functions of dense plasmas: analytic approximations for astrophysical applications. Contrib. Plasma Phys. 50, 82–87 (2010).

    Article  ADS  Google Scholar 

  105. Cassisi, S., Potekhin, A. Y., Pietrinferni, A., Catelan, M. & Salaris, M. Updated electron-conduction opacities: the impact on low-mass stellar models. Astrophys. J. 661, 1094–1104 (2007).

    Article  ADS  Google Scholar 

  106. Iglesias, C. A. & Rogers, F. J. Radiative opacities for carbon- and oxygen-rich mixtures. Astrophys. J. 412, 752–760 (1993).

    Article  ADS  Google Scholar 

  107. Iglesias, C. A. & Rogers, F. J. Updated OPAL opacities. Astrophys. J. 464, 943–953 (1996).

    Article  ADS  Google Scholar 

  108. Ferguson, J. W. et al. Low-temperature opacities. Astrophys. J. 623, 585–596 (2005).

    Article  ADS  Google Scholar 

  109. Buchler, J. R. & Yueh, W. R. Compton scattering opacities in a partially degenerate electron plasma at high temperatures. Astrophys. J. 210, 440–446 (1976).

    Article  ADS  Google Scholar 

  110. Sharma, S., Bland-Hawthorn, J., Johnston, K. V. & Binney, J. Galaxia: a code to generate a synthetic survey of the Milky Way. Astrophys. J. 730, 3 (2011).

    Article  ADS  Google Scholar 

  111. Sharma, S. et al. The K2-HERMES Survey: age and metallicity of the thick disc. Mon. Not. R. Astron. Soc. 490, 5335–5352 (2019).

    Article  ADS  Google Scholar 

  112. Choi, J. et al. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled models. Astrophys. J. 823, 102 (2016).

    Article  ADS  Google Scholar 

  113. Guggenberger, E., Hekker, S., Basu, S. & Bellinger, E. Significantly improving stellar mass and radius estimates: a new reference function for the Δν scaling relation. Mon. Not. R. Astron. Soc. 460, 4277–4281 (2016).

    Article  ADS  Google Scholar 

  114. Rodrigues, T. S. et al. Determining stellar parameters of asteroseismic targets: going beyond the use of scaling relations. Mon. Not. R. Astron. Soc. 467, 1433–1448 (2017).

    ADS  Google Scholar 

  115. Serenelli, A. et al. The first APOKASC catalog of Kepler dwarf and subgiant stars. Astrophys. J. Suppl. Ser. 233, 23 (2017).

    Article  ADS  Google Scholar 

  116. Pinsonneault, M. H. et al. The second APOKASC catalog: the empirical approach. Astrophys. J. Suppl. Ser. 239, 32 (2018).

    Article  ADS  Google Scholar 

  117. Zinn, J. C. et al. Testing the radius scaling relation with Gaia DR2 in the Kepler field. Astrophys. J. 885, 166 (2019).

    Article  ADS  Google Scholar 

  118. Casagrande, L. et al. The GALAH survey: effective temperature calibration from the InfraRed Flux Method in the Gaia system. Mon. Not. R. Astron. Soc. 507, 2684–2696 (2021).

    Article  ADS  Google Scholar 

  119. Huber, D. et al. Asteroseismology and Gaia: testing scaling relations using 2200 Kepler stars with TGAS parallaxes. Astrophys. J. 844, 102 (2017).

    Article  ADS  Google Scholar 

  120. Berger, T. A. et al. The Gaia–Kepler Stellar Properties Catalog. I. Homogeneous fundamental properties for 186,301 Kepler stars. Astron. J. 159, 280 (2020).

    Article  ADS  Google Scholar 

  121. Gaia Collaboration et al. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

  122. Gaia Collaboration et al. Gaia Early Data Release 3: summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).

  123. Green, G. M., Schlafly, E., Zucker, C., Speagle, J. S. & Finkbeiner, D. A 3D dust map based on Gaia, Pan-STARRS 1, and 2MASS. Astrophys. J. 887, 93 (2019).

    Article  ADS  Google Scholar 

  124. Li, T. et al. Asteroseismology of 36 Kepler subgiants—II. Determining ages from detailed modelling. Mon. Not. R. Astron. Soc. 495, 3431–3462 (2020).

    Article  ADS  Google Scholar 

  125. Ong, J. M. J. et al. Mixed modes and asteroseismic surface effects. II. Subgiant systematics. Astrophys. J. 922, 18 (2021).

    Article  ADS  Google Scholar 

  126. Ball, W. H. & Gizon, L. A new correction of stellar oscillation frequencies for near-surface effects. Astron. Astrophys. 568, A123 (2014).

    Article  ADS  Google Scholar 

  127. Moe, M. & Di Stefano, R. Mind your Ps and Qs: the interrelation between period (P) and mass-ratio (Q) distributions of binary stars. Astrophys. J. Suppl. Ser. 230, 15 (2017).

    Article  ADS  Google Scholar 

  128. Eggleton, P. P. Aproximations to the radii of Roche lobes. Astrophys. J. 268, 368–369 (1983).

    Article  ADS  Google Scholar 

  129. Mazzola Daher, C. et al. Stellar multiplicity and stellar rotation: insights from APOGEE. Mon. Not. R. Astron. Soc. 512, 2051–2061 (2022).

    Article  ADS  Google Scholar 

  130. van der Walt, S., Colbert, S. C. & Varoquaux, G. The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011).

    Article  Google Scholar 

  131. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  Google Scholar 

  132. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

  133. Astropy Collaboration et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

  134. Astropy Collaboration et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

  135. McKinney, W. Data structures for statistical computing in Python. In Proc. Ninth Python in Science Conference (eds van der Walt, S. & Millman, J.) 56–61 (2010).

  136. Townsend, R. MESA SDK for Linux (2020).

  137. Lightkurve Collaboration et al. Lightkurve: Kepler and TESS time series analysis in Python. Astrophysics Source Code Library ascl:1812.013 (2018).

  138. McDonald, I., Johnson, C. I. & Zijlstra, A. A. Empirical determination of the integrated red giant and horizontal branch stellar mass-loss in ω Centauri. Mon. Not. R. Astron. Soc. 416, L6–L10 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Hon, K. Brogaard and Y. Elsworth for their comments.

T.R.B and D.H. acknowledge funding from the Australian Research Council (Discovery Project DP210103119). D.H. also acknowledges support from the Alfred P. Sloan Foundation and the National Aeronautics and Space Administration (80NSSC19K0597). M.J. acknowledges the Lasker Fellowship grant. S.B. acknowledges the Joint Research Fund in Astronomy (U2031203) under a cooperative agreement between the National Natural Science Foundation of China (NSFC) and Chinese Academy of Sciences (CAS) and the NSFC grants 12090040 and 12090042. G.L. acknowledges support from the project BEAMING ANR-18-CE31-0001 of the French National Research Agency (ANR) and from the Centre National d’Etudes Spatiales (CNES).

We gratefully acknowledge the Kepler teams, whose efforts made these results possible. Funding for the Kepler mission is provided by the NASA Science Mission Directorate. This paper includes data collected by the Kepler mission and obtained from the MAST data archive at the Space Telescope Science Institute (STScI). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5–26555.

Guoshoujing Telescope (LAMOST) is a National Major Scientific Project built by the Chinese Academy of Sciences. Funding for the project has been provided by the National Development and Reform Commission. LAMOST is operated and managed by the National Astronomical Observatories, Chinese Academy of Sciences.

This work presents results from the European Space Agency (ESA) space mission Gaia. Gaia data are being processed by the Gaia Data Processing and Analysis Consortium (DPAC). Funding for the DPAC is provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement (MLA). The Gaia mission website is https://www.cosmos.esa.int/gaia. The Gaia archive website is https://archives.esac.esa.int/gaia.

Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the US Department of Energy Office of Science and the participating institutions.

We acknowledge Sydney Informatics (a core research facility of the University of Sydney), the high performance computing (HPC) cluster Artemis from the University of Sydney, the HPC cluster headnode from the School of Physics and the HPC cluster Gadi from the National Computational Infrastructure (NCI Australia, an NCRIS-enabled capability supported by the Australian Government) for providing the HPC resources that have contributed to the research results reported within this paper.

Author information

Authors and Affiliations

Authors

Contributions

Y.L., T.R.B., D.S., Y.C., I.L.C. and G.L. analysed photometric data; S.J.M., D.H., X.Z., S.B and D.R.H. contributed to binary confirmation; Y.L., M.J. and D.M. constructed theoretical models; B.T.M., M.R.H., S.S. and Y.W. interpreted spectroscopic data. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yaguang Li or Timothy R. Bedding.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Nicholas Rui, Oliver Hall and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Galaxia simulation of CHeB stars in the Kepler field.

a, The seismic quantity \({\nu }_{\max }^{0.75}/{{\Delta }}\nu\) versus \({\nu }_{\max }\). The ZAHeB edge (the black dashed line) is represented by a spline (defined by the crosses). The inset of a shows the distribution of the vertical distances to the edge. The distribution is fitted by a half-Gaussian half-Lorentzian profile, shown by the green line. The standard deviation of the half-Gaussian profile represents the intrinsic broadening of the ZAHeB edge. b, The metallicity–mass diagram. The dashed line is the lowest mass a star can be without mass loss given a metallicity, determined with MIST models (see Methods).

Extended Data Fig. 2 Power spectra for three representative stars, including a regular CHeB star (a), an underluminous star (b), and a very low-mass star (c).

The right panels show their locations on the mass–radius diagram marked by the star symbols. The power spectra (grey lines) are smoothed by 0.06Δν (overlaid black lines). The integers 0–2 represent the angular-degree l. The locations of \({\nu }_{\max }\) are indicated by the arrows. The observed values of Δν and ΔP (see Extended Data Fig. 3) are represented by the lengths of the black line segments.

Extended Data Fig. 3 Period échelle diagrams for the regular CHeB star (a), the under-luminous star (b), and the very-low-mass star (c) that are shown in Extended Fig. 2.

The modes are marked by circles (l = 0), triangles (l = 1) and squares (l = 2). Error bars are not shown. The blue dashed lines connect the l = 1 modes in order. We adjusted the widths of the échelle diagrams such that the l = 1 modes form a “zigzag” pattern37. Those widths correspond to the period spacings of l = 1 modes, which confirm them as CHeB stars.

Extended Data Fig. 4 Stellar models for KIC 8367834 within 3σ of the classical constraints, colour-coded with probability using constraints from parallax, Teff, metallicity, and oscillation frequencies.

a, The Hertzsprung–Russell diagram. b, The mass–radius diagram. c, The seismic quantity \({\nu }_{\max }^{0.75}/{{\Delta }}\nu\) versus \({\nu }_{\max }\). d, Mass versus \({\nu }_{\max }\). The black boxes show the 1.5σ confidence regions, either directly from observations (L, Teff, \({\nu }_{\max }\), Δν) or from the scaling relations (M, R).

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Bedding, T.R., Murphy, S.J. et al. Discovery of post-mass-transfer helium-burning red giants using asteroseismology. Nat Astron 6, 673–680 (2022). https://doi.org/10.1038/s41550-022-01648-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01648-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing