Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Infant-phase reddening by surface Fe-peak elements in a normal type Ia supernova

Abstract

Type Ia supernovae are thermonuclear explosions of white dwarf stars. They play a central role in the chemical evolution of the Universe and are an important measure of cosmological distances. However, outstanding questions remain about their origins. Despite extensive efforts to obtain natal information from their earliest signals, observations have thus far failed to identify how the majority of them explode. Here, we present infant-phase detections of SN 2018aoz from a very low brightness of −10.5 AB absolute magnitude, revealing a hitherto unseen plateau in the B band that results in a rapid redward colour evolution between 1.0 and 12.4 hours after the estimated epoch of first light. The missing B-band flux is best explained by line-blanket absorption from Fe-peak elements in the outer 1% of the ejected mass. The observed B − V colour evolution of the supernova also matches the prediction from an over-density of Fe-peak elements in the same outer 1% of the ejected mass, whereas bluer colours are expected from a purely monotonic distribution of Fe-peak elements. The presence of excess nucleosynthetic material in the extreme outer layers of the ejecta points to enhanced surface nuclear burning or extended subsonic mixing processes in some normal type Ia SN explosions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Subset of the light curves of SN 2018aoz compared to three other early SNe.
Fig. 2: Comparison of the colour evolution of SN 2018aoz to other SNe and models.
Fig. 3: Early light curves of SN 2018aoz compared to those of model predictions.
Fig. 4: Infant-phase SED of SN 2018aoz compared to model predictions.

Similar content being viewed by others

Data availability

Source data for Fig. 1 during 0–1 days since first light are provided with this paper, whereas data for the entire single-epoch ultraviolet to near-infrared light curves are provided in the Supplementary Information. All photometric and spectroscopic data are also available on the Open Supernova Catalog70 and WISeREP375. The modelled light curves and spectra of our He-shell DDet simulations are available at https://github.com/niyuanqi/he-shell-ddet.

Code availability

We performed light curve template fitting in the post-infant phase using SNooPy, available at https://csp.obs.carnegiescience.edu/data/snpy/snpy. In our He-shell DDet models, hydrodynamics and nucleosynthesis simulations were conducted using Castro94,95 and the radiative transfer calculations were conducted using Sedona96. The code used to measure the KMTNet light curves of SN 2018aoz, construct the bolometric light curves and generate the analytic 56Ni-powered light curve models are available at https://github.com/niyuanqi/SNAP. IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

References

  1. Matteucci, F. Chemical Evolution of Galaxies (Springer, 2012).

  2. Riess, A. G. et al. Observational evidence from supernovae for an accelerating Universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998).

    Article  ADS  Google Scholar 

  3. Perlmutter, S. et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999).

    Article  ADS  MATH  Google Scholar 

  4. Maoz, D., Mannucci, F. & Nelemans, G. Observational clues to the progenitors of type Ia supernovae. Annu. Rev. Astron. Astrophys. 52, 107–170 (2014).

    Article  ADS  Google Scholar 

  5. Blondin, S. et al. The spectroscopic diversity of type Ia supernovae. Astron. J. 143, 126 (2012).

    Article  ADS  Google Scholar 

  6. Polin, A., Nugent, P. & Kasen, D. Observational predictions for sub-Chandrasekhar mass explosions: further evidence for multiple progenitor systems for type Ia supernovae. Astrophys. J. 873, 84 (2019).

    Article  ADS  Google Scholar 

  7. Townsley, D. M., Miles, B. J., Shen, K. J. & Kasen, D. Double detonations with thin, modestly enriched helium layers can make normal type Ia supernovae. Astrophys. J. Lett. 878, L38 (2019).

    Article  ADS  Google Scholar 

  8. Shen, K. J. et al. Non-local thermodynamic equilibrium radiative transfer simulations of sub-Chandrasekhar-mass white dwarf detonations. Astrophys. J. Lett. 909, L18 (2021).

    Article  ADS  Google Scholar 

  9. Reinecke, M., Hillebrandt, W. & Niemeyer, J. C. Three-dimensional simulations of type Ia supernovae. Astron. Astrophys. 391, 1167–1172 (2002).

    Article  ADS  Google Scholar 

  10. Maeda, K., Jiang, J.-A., Shigeyama, T. & Doi, M. Type Ia supernovae in the first few days: signatures of helium detonation versus interaction. Astrophys. J. 861, 78 (2018).

    Article  ADS  Google Scholar 

  11. Jiang, J.-A. et al. A hybrid type Ia supernova with an early flash triggered by helium-shell detonation. Nature 550, 80–83 (2017).

    Article  ADS  Google Scholar 

  12. De, K. et al. ZTF 18aaqeasu (SN2018byg): a massive helium-shell double detonation on a sub-Chandrasekhar-mass white dwarf. Astrophys. J. Lett. 873, L18 (2019).

    Article  ADS  Google Scholar 

  13. Bulla, M. et al. ZTF early observations of type Ia supernovae. III. Early-time colors as a test for explosion models and multiple populations. Astrophys. J. 902, 48 (2020).

    Article  ADS  Google Scholar 

  14. Marion, G. H. et al. SN 2012cg: evidence for interaction between a normal SN Ia and a non-degenerate binary companion. Astrophys. J. 820, 92 (2016).

    Article  ADS  Google Scholar 

  15. Hosseinzadeh, G. et al. Early blue excess from the type Ia supernova 2017cbv and implications for its progenitor. Astrophys. J. Lett. 845, L11 (2017).

    Article  ADS  Google Scholar 

  16. Shappee, B. J. et al. Strong evidence against a non-degenerate companion in SN 2012cg. Astrophys. J. 855, 6 (2018).

    Article  ADS  Google Scholar 

  17. Dimitriadis, G. et al. K2 observations of SN 2018oh reveal a two-component rising light curve for a type Ia supernova. Astrophys. J. Lett. 870, L1 (2019).

    Article  ADS  Google Scholar 

  18. Jiang, J.-A., Doi, M., Maeda, K. & Shigeyama, T. Surface radioactivity or interactions? Multiple origins of early-excess type Ia supernovae and associated subclasses. Astrophys. J. 865, 149 (2018).

    Article  ADS  Google Scholar 

  19. Stritzinger, M. D. et al. Red versus blue: early observations of thermonuclear supernovae reveal two distinct populations? Astrophys. J. Lett. 864, L35 (2018).

    Article  ADS  Google Scholar 

  20. Sand, D. J. et al. Nebular spectroscopy of the “blue bump” type Ia supernova 2017cbv. Astrophys. J. 863, 24 (2018).

    Article  ADS  Google Scholar 

  21. Nugent, P. E. et al. Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star. Nature 480, 344–347 (2011).

    Article  ADS  Google Scholar 

  22. Foley, R. J. et al. Very early ultraviolet and optical observations of the type Ia supernova 2009ig. Astrophys. J. 744, 38 (2012).

    Article  ADS  Google Scholar 

  23. Olling, R. P. et al. No signature of ejecta interaction with a stellar companion in three type Ia supernovae. Nature 521, 332–335 (2015).

    Article  ADS  Google Scholar 

  24. Cartier, R. et al. Early observations of the nearby type Ia supernova SN 2015F. Mon. Not. R. Astron. Soc. 464, 4476–4494 (2017).

    Article  ADS  Google Scholar 

  25. Holmbo, S. et al. Discovery and progenitor constraints on the type Ia supernova 2013gy. Astron. Astrophys. 627, A174 (2019).

    Article  Google Scholar 

  26. Miller, A. A. et al. ZTF early observations of type Ia supernovae. II. First light, the initial rise, and time to reach maximum brightness. Astrophys. J. 902, 47 (2020).

    Article  ADS  Google Scholar 

  27. Moon, D.-S. et al. Supernova and optical transient observations using the three wide-field telescope array of the KMTNet. Proc. SPIE 9906, 99064I (2016).

    Article  Google Scholar 

  28. Kim, S.-L. et al. KMTNET: a network of 1.6 m wide-field optical telescopes installed at three southern observatories. J. Korean Astron. Soc. 49, 37–44 (2016).

    Article  ADS  Google Scholar 

  29. Norris, M. A. & Kannappan, S. J. The ubiquity and dual nature of ultra-compact dwarfs. Mon. Not. R. Astron. Soc. 414, 739–758 (2011).

    Article  ADS  Google Scholar 

  30. Tartaglia, L. et al. The early detection and follow-up of the highly obscured type II supernova 2016ija/DLT16am. Astrophys. J. 853, 62 (2018).

    Article  ADS  Google Scholar 

  31. Brown, T. M. et al. Las Cumbres Observatory Global Telescope network. Publ. Astron. Soc. Pac. 125, 1031 (2013).

    Article  ADS  Google Scholar 

  32. Parrent, J., Friesen, B. & Parthasarathy, M. A review of type Ia supernova spectra. Astrophys. Space Sci. 351, 1–52 (2014).

    Article  ADS  Google Scholar 

  33. Pereira, R. et al. Spectrophotometric time series of SN 2011fe from the Nearby Supernova Factory. Astron. Astrophys. 554, A27 (2013).

    Article  Google Scholar 

  34. Li, W. et al. Photometric and spectroscopic properties of type Ia supernova 2018oh with early excess emission from the Kepler 2 observations. Astrophys. J. 870, 12 (2019).

    Article  ADS  Google Scholar 

  35. Goobar, A. et al. Constraints on the origin of the first light from SN 2014J. Astrophys. J. 799, 106 (2015).

    Article  ADS  Google Scholar 

  36. Piro, A. L. & Nakar, E. What can we learn from the rising light curves of radioactively powered supernovae? Astrophys. J. 769, 67 (2013).

    Article  ADS  Google Scholar 

  37. Piro, A. L. & Nakar, E. Constraints on shallow 56Ni from the early light curves of type Ia supernovae. Astrophys. J. 784, 85 (2014).

    Article  ADS  Google Scholar 

  38. Pinto, P. A. & Eastman, R. G. The physics of type IA supernova light curves. II. Opacity and diffusion. Astrophys. J. 530, 757–776 (2000).

    Article  ADS  Google Scholar 

  39. Kasen, D. Seeing the collision of a supernova with its companion star. Astrophys. J. 708, 1025–1031 (2010).

    Article  ADS  Google Scholar 

  40. Piro, A. L., Chang, P. & Weinberg, N. N. Shock breakout from type Ia supernova. Astrophys. J. 708, 598–604 (2010).

    Article  ADS  Google Scholar 

  41. Mihalas, D. Statistical-equilibrium model atmospheres for early-type stars. I. Hydrogen continua. Astrophys. J. 149, 169 (1967).

    Article  ADS  Google Scholar 

  42. Mihalas, D. & Stone, M. E. Statistical equilibrium model atmospheres for early-type stars. III. Hydrogen and helium continua. Astrophys. J. 151, 293–310 (1968).

    Article  ADS  Google Scholar 

  43. Magee, M. R. et al. Determining the 56Ni distribution of type Ia supernovae from observations within days of explosion. Astron. Astrophys. 634, A37 (2020).

    Article  Google Scholar 

  44. Nomoto, K. & Leung, S.-C. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 1275–1313 (Springer, 2017).

  45. Maeda, K. et al. Nucleosynthesis in two-dimensional delayed detonation models of type Ia supernova explosions. Astrophys. J. 712, 624–638 (2010).

    Article  ADS  Google Scholar 

  46. Seitenzahl, I. R. et al. Three-dimensional delayed-detonation models with nucleosynthesis for type Ia supernovae. Mon. Not. R. Astron. Soc. 429, 1156–1172 (2013).

    Article  ADS  Google Scholar 

  47. Seitenzahl, I. R. et al. Three-dimensional simulations of gravitationally confined detonations compared to observations of SN 1991T. Astron. Astrophys. 592, A57 (2016).

    Article  Google Scholar 

  48. Shen, K. J. & Moore, K. The initiation and propagation of helium detonations in white dwarf envelopes. Astrophys. J. 797, 46 (2014).

    Article  ADS  Google Scholar 

  49. Kasen, D. Secondary maximum in the near-infrared light curves of type Ia supernovae. Astrophys. J. 649, 939–953 (2006).

    Article  ADS  Google Scholar 

  50. Han, X. et al. SN 2017cfd: a normal type Ia supernova discovered very young. Astrophys. J. 892, 142 (2020).

    Article  ADS  Google Scholar 

  51. Maguire, K. et al. Exploring the spectral diversity of low-redshift type Ia supernovae using the Palomar Transient Factory. Mon. Not. R. Astron. Soc. 444, 3258–3274 (2014).

    Article  ADS  Google Scholar 

  52. Afsariardchi, N. et al. KSP-SN-2016kf: a long-rising H-rich type II supernova with unusually high 56Ni mass discovered in the KMTNet Supernova Program. Astrophys. J. 881, 22 (2019).

    Article  ADS  Google Scholar 

  53. Moon, D.-S. et al. Rapidly declining hostless type Ia supernova KSP-OT-201509b from the KMTNet Supernova Program: transitional nature and constraint on 56Ni distribution and progenitor type. Astrophys. J. 910, 151 (2021).

    Article  ADS  Google Scholar 

  54. Reichart, D. et al. PROMPT: Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes. Il Nuovo Cimento C 28, 767–770 (2005).

    ADS  Google Scholar 

  55. Valenti, S., Sand, D. J. & Wyatt, S. DLT40 Transient Discovery Report for 2018-04-02. Transient Name Server Discovery Report No. 2018-428 (IAU, 2018).

  56. Brown, P. & Sand, D. Swift UVOT Observations Show SN Ia 2018aoz/DLT18q Is UV-bright. The Astronomer’s Telegram No. 11511 (NASA, 2018).

  57. Gehrels, N. et al. The Swift gamma-ray burst mission. Astrophys. J. 611, 1005–1020 (2004).

    Article  ADS  Google Scholar 

  58. Roming, P. W. A. et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 120, 95–142 (2005).

    Article  ADS  Google Scholar 

  59. DePoy, D. L. et al. A novel double imaging camera (ANDICAM). Proc. SPIE 4841, 827–838 (2003).

    Article  ADS  Google Scholar 

  60. Moffat, A. F. J. A theoretical investigation of focal stellar images in the photographic emulsion and application to photographic photometry. Astron. Astrophys. 3, 455 (1969).

    ADS  Google Scholar 

  61. Trujillo, I., Aguerri, J. A. L., Cepa, J. & Gutiérrez, C. M. The effects of seeing on Sérsic profiles – II. The Moffat PSF. Mon. Not. R. Astron. Soc. 328, 977–985 (2001).

    Article  ADS  Google Scholar 

  62. Henden, A. A. et al. APASS Data Release 10. AAS Meet. Abst. 232, 223.06 (2018).

    Google Scholar 

  63. Park, H. S. et al. Dwarf galaxy discoveries from the KMTNet Supernova Program. I. The NGC 2784 galaxy group. Astrophys. J. 848, 19 (2017).

    Article  ADS  Google Scholar 

  64. Stritzinger, M. et al. Optical photometry of the type Ia supernova 1999ee and the type Ib/c supernova 1999ex in IC 5179. Astron. J. 124, 2100–2117 (2002).

    Article  ADS  Google Scholar 

  65. Valenti, S. et al. The diversity of type II supernova versus the similarity in their progenitors. Mon. Not. R. Astron. Soc. 459, 3939–3962 (2016).

    Article  ADS  Google Scholar 

  66. Brown, P. J., Breeveld, A. A., Holland, S., Kuin, P. & Pritchard, T. SOUSA: the Swift Optical/Ultraviolet Supernova Archive. Astrophys. Space Sci. 354, 89–96 (2014).

    Article  ADS  Google Scholar 

  67. Breeveld, A. A. et al. An updated ultraviolet calibration for the Swift/UVOT. AIP Conf. Ser. 1358, 373–376 (2011).

    ADS  Google Scholar 

  68. Breeveld, A. A. SWIFT-UVOT-CALDB-15-06: Sensitivity Loss https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/swift/docs/uvot/uvotcaldb_throughput_06.pdf (2020).

  69. Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).

    Article  ADS  Google Scholar 

  70. Guillochon, J., Parrent, J., Kelley, L. Z. & Margutti, R. An open catalog for supernova data. Astrophys. J. 835, 64 (2017).

    Article  ADS  Google Scholar 

  71. Jeong, W.-S. et al. Optical survey with KMTNet for dusty star-forming galaxies in the Akari Deep Field South. J. Korean Astron. Soc. 49, 225–232 (2016).

    Article  ADS  Google Scholar 

  72. Hook, I. M. et al. The Gemini–North Multi-Object Spectrograph: performance in imaging, long-slit, and multi-object spectroscopic modes. Publ. Astron. Soc. Pac. 116, 425–440 (2004).

    Article  ADS  Google Scholar 

  73. Schmidt, G. D., Weymann, R. J. & Foltz, C. B. A moderate-resolution, high-throughput CCD channel for the MMT spectrograph. Publ. Astron. Soc. Pac. 101, 713–724 (1989).

    Article  ADS  Google Scholar 

  74. Matheson, T. et al. Optical spectroscopy of type Ia supernovae. Astron. J. 135, 1598–1615 (2008).

    Article  ADS  Google Scholar 

  75. Yaron, O. & Gal-Yam, A. WISeREP—an interactive supernova data repository. Publ. Astron. Soc. Pac. 124, 668–681 (2012).

    Article  ADS  Google Scholar 

  76. Meikle, W. P. S. et al. An early-time infrared and optical study of the type Ia supernovae SN 1994D and 1991T. Mon. Not. R. Astron. Soc. 281, 263–280 (1996).

    Article  ADS  Google Scholar 

  77. Pignata, G. et al. Optical and infrared observations of SN 2002dj: some possible common properties of fast-expanding type Ia supernovae. Mon. Not. R. Astron. Soc. 388, 971–990 (2008).

    Article  ADS  Google Scholar 

  78. Blondin, S. & Tonry, J. L. Determining the type, redshift, and age of a supernova spectrum. Astrophys. J. 666, 1024–1047 (2007).

    Article  ADS  Google Scholar 

  79. Steer, I. et al. Redshift-independent distances in the NASA/IPAC Extragalactic Database: methodology, content, and use of NED-D. Astron. J. 153, 37 (2017).

    Article  ADS  Google Scholar 

  80. Riess, A. G. et al. A 2.4% determination of the local value of the Hubble constant. Astrophys. J. 826, 56 (2016).

    Article  ADS  Google Scholar 

  81. Mould, J. R. et al. The Hubble Space Telescope Key Project on the extragalactic distance scale. XXVIII. Combining the constraints on the Hubble constant. Astrophys. J. 529, 786–794 (2000).

    Article  ADS  Google Scholar 

  82. Tully, R. B. et al. Cosmicflows-2: the data. Astron. J. 146, 86 (2013).

    Article  ADS  Google Scholar 

  83. Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    Article  ADS  Google Scholar 

  84. Fitzpatrick, E. L. Correcting for the effects of interstellar extinction. Publ. Astron. Soc. Pac. 111, 63–75 (1999).

    Article  ADS  Google Scholar 

  85. Fitzpatrick, E. L. & Massa, D. An analysis of the shapes of interstellar extinction curves. V. The IR-through-UV curve morphology. Astrophys. J. 663, 320–341 (2007).

    Article  ADS  Google Scholar 

  86. Poznanski, D., Prochaska, J. X. & Bloom, J. S. An empirical relation between sodium absorption and dust extinction. Mon. Not. R. Astron. Soc. 426, 1465–1474 (2012).

    Article  ADS  Google Scholar 

  87. Misgeld, I. & Hilker, M. Families of dynamically hot stellar systems over 10 orders of magnitude in mass. Mon. Not. R. Astron. Soc. 414, 3699–3710 (2011).

    Article  ADS  Google Scholar 

  88. Gavazzi, G., Fumagalli, M., Cucciati, O. & Boselli, A. A snapshot on galaxy evolution occurring in the Great Wall: the role of Nurture at z = 0. Astron. Astrophys. 517, A73 (2010).

    Article  ADS  Google Scholar 

  89. Harris, W. E., Allwright, J. W. B., Pritchet, C. J. & van den Bergh, S. The luminosity distribution of globular clusters in three giant Virgo ellipticals. Astrophys. J. Suppl. Ser. 76, 115–151 (1991).

    Article  ADS  Google Scholar 

  90. Phillips, M. M. et al. The reddening-free decline rate versus luminosity relationship for type Ia supernovae. Astron. J. 118, 1766–1776 (1999).

    Article  ADS  Google Scholar 

  91. Burns, C. R. et al. The Carnegie Supernova Project: intrinsic colors of type Ia supernovae. Astrophys. J. 789, 32 (2014).

    Article  ADS  Google Scholar 

  92. Burns, C. R. et al. The Carnegie Supernova Project: light-curve fitting with SNooPy. Astron. J. 141, 19 (2011).

    Article  ADS  Google Scholar 

  93. Hsiao, E. Y. et al. K-corrections and spectral templates of type Ia supernovae. Astrophys. J. 663, 1187–1200 (2007).

    Article  ADS  Google Scholar 

  94. Almgren, A. S. et al. CASTRO: a new compressible astrophysical solver. I. Hydrodynamics and self-gravity. Astrophys. J. 715, 1221–1238 (2010).

    Article  ADS  Google Scholar 

  95. Zingale, M. et al. Meeting the challenges of modeling astrophysical thermonuclear explosions: Castro, Maestro, and the AMReX astrophysics suite. J. Phys. Conf. Ser. 1031, 012024 (2018).

    Article  Google Scholar 

  96. Kasen, D., Thomas, R. C. & Nugent, P. Time-dependent Monte Carlo radiative transfer calculations for three-dimensional supernova spectra, light curves, and polarization. Astrophys. J. 651, 366–380 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research has made use of the KMTNet system operated by the Korea Astronomy and Space Science Institute (KASI), and the data were obtained at the three host sites of CTIO in Chile, SAAO in South Africa and SSO in Australia. The Gemini South observations were obtained under the K-GMT Science Program (PID GS-2018A-Q-117 and GS-2018B-Q-121) of KASI. The Swift observations were triggered through the Swift GI program 80NSSC19K0316. SOUSA is supported by NASA’s Astrophysics Data Analysis Program through grant no. NNX13AF35G. Some of the data presented here were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The Computational HEP program in the United States Department of Energy’s Science Office of High Energy Physics provided simulation resources through grant no. KA2401022. This research used resources of the National Energy Research Scientific Computing Center, a Department of Energy Office of Science User Facility operated under contract no. DE-AC02-05CH11231. D.-S.M., M.R.D. and C.D.M. are supported by Discovery Grants from the Natural Sciences and Engineering Research Council of Canada. D.-S.M. was supported in part by a Leading Edge Fund from the Canadian Foundation for Innovation (project no. 30951). M.R.D. was supported in part by the Canada Research Chairs Program, the Canadian Institute for Advanced Research (CIFAR) and the Dunlap Institute at the University of Toronto. D.J.S. acknowledges support by NSF grant nos. AST-1821987, 1821967 and 1908972 and from the Heising–Simons Foundation under grant no. 2020-1864. S.G.-G. acknowledges support by FCT under project CRISP PTDC/FIS-AST-31546 and project UIDB/00099/2020. H.S.P. was supported in part by a National Research Foundation (NRF) of Korea grant funded by the Korean government (MSIT, Ministry of Science and ICT; no. NRF-2019R1F1A1058228). P.J.B. acknowledges support from the Swift GI program 80NSSC19K0316. S.V., Y.D. and K.A.B. acknowledge support by NSF grant nos. AST-1813176 and AST-2008108. C.M. acknowledges support by NSF grant AST-1313484. I.A. is a CIFAR Azrieli Global Scholar in the Gravity and the Extreme Universe Program and acknowledges support from that program, from the Israel Science Foundation (grant nos. 2108/18 and 2752/19), from the United States – Israel Binational Science Foundation (BSF) and from an Israeli Council for Higher Education Alon Fellowship. R.L.B. acknowledges support by NASA through Hubble Fellowship grant no. 51386.01 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA under contract no. NAS 5-26555. A.G.-Y. acknowledges support from the European Union via ERC grant no. 725161, the ISF GW Excellence Center, an IMOS space infrastructure grant and BSF/Transformative and GIF grants, as well as from the Benoziyo Endowment Fund for the Advancement of Science, the Deloro Institute for Advanced Research in Space and Optics, the Veronika A. Rabl Physics Discretionary Fund, P. and T. Gardner, the Yeda-Sela Center for Basic Research and a WIS-CIT joint research grant. A.G.-Y. is the recipient of the Helen and Martin Kimmel Award for Innovative Investigation. L.G. acknowledges financial support from the Spanish Ministerio de Ciencia e Innovación (MCIN), the Agencia Estatal de Investigación (AEI) 10.13039/501100011033, the European Social Fund (ESF) ‘Investing in your future’ under the 2019 Ramón y Cajal program RYC2019-027683-I and the PID2020-115253GA-I00 HOSTFLOWS project, as well as from the Centro Superior de Investigaciones Científicas (CSIC) under the PIE project 20215AT016. G.P. acknowledges support from the Millennium Science Initiative through grant no. IC120009. J.A. is supported by the Stavros Niarchos Foundation (SNF) and the Hellenic Foundation for Research and Innovation (HFRI) under the 2nd Call of ‘Science and Society’ Action ‘Always strive for excellence – Theodoros Papazoglou’ (project no. 01431).

Author information

Authors and Affiliations

Authors

Contributions

Y.Q.N. conducted most of the analyses under the supervision of D.-S.M. and M.R.D. D.-S.M. is the principal investigator of the KSP that detected the infant-phase features of SN 2018aoz and wrote the KSP pipeline. M.R.D. led the collaboration between the KSP and other partners. Y.Q.N., D.-S.M. and M.R.D. co-drafted the manuscript. A.P. conducted the He-shell DDet simulations under the supervision of P.N. D.-S.M., M.R.D., Y.Q.N., N.A., S.G.-G., S.C.K., Y.L., H.S.P., J.A., A.G.-Y., S.B.C., G.P. and S.D.R. are members of the KSP. N.A., D.-S.M., M.R.D., R.G.C. and C.D.M. are members of the Canadian Gemini South observing programme for the KSP. H.S.P., D.-S.M., S.C.K. and Y.L. are members of the Korean Gemini South observing programme for the KSP. A.L.P. performed the shock breakout modelling. P.J.B. led the Swift program for ultraviolet observations with help from S.B.C. L.G. and G.P. obtained the ANDICAM near-infrared observations. D.J.S. and S.V. co-led the DLT40 programme. J.H., D.E.R., V.K. and S.W. contributed to the operation of the DLT40 programme. S.Y. built the machine-learning implementation for the DLT40 survey. K.A.B., Y.D., J.E.A. and N.S. are members of the DLT40 team who obtained the Keck and MMT spectra. S.-M.C. and Y.L. helped operate the KMTNet. D.A.H., C.M., I.A., J.B., D.H. and G.H. contributed to the LCO photometry and the FLOYDS spectroscopy. M.R.D., R.L.B., T.W.-S.H., S.D.J., N.M. and J.R. contributed to the du Pont WFCCD and Magellan spectra. All of the authors contributed to the discussion.

Corresponding author

Correspondence to Dae-Sik Moon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Ji-an Jiang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–7, Tables 1 and 2 and Figs. 1–7.

Supplementary Data 1

The entirety of Supplementary Table 1 in machine-readable form.

Source data

Source Data Fig. 1

The photometry of SN 2018aoz in Fig. 1 during the first 0–1 days since first light.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, Y.Q., Moon, DS., Drout, M.R. et al. Infant-phase reddening by surface Fe-peak elements in a normal type Ia supernova. Nat Astron 6, 568–576 (2022). https://doi.org/10.1038/s41550-022-01603-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01603-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing