Abstract
Gravitational wave (GW) detection in space probes the GW spectrum that is inaccessible from the Earth. In addition to the LISA project led by the European Space Agency, and the DECIGO detector proposed by the Japan Aerospace Exploration Agency, two Chinese space-based GW observatories—TianQin and Taiji—are planned to be launched in the 2030s. TianQin has a unique concept in its design with a geocentric orbit. Taiji’s design is similar to LISA, but is more ambitious with a longer arm distance. Both facilities are complementary to LISA, considering that TianQin is sensitive to higher frequencies and Taiji probes similar frequencies but with a higher sensitivity. In this Perspective we explain the concepts of both facilities and introduce the development milestones of the TianQin and Taiji projects in testing key technologies to pave the way for future space-based GW detections. Considering that LISA, TianQin and Taiji have similar scientific goals, are all scheduled to be launched around the 2030s and will operate concurrently, we discuss possible collaborations among them to improve GW source localization and characterization.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
The data that support the findings of this study are available from Y.G. upon reasonable request. The data for Fig. 2 can be generated from the code deposited in https://github.com/yggong/transfer_function.
Code availability
The Python code can be obtained at https://github.com/yggong/transfer_function.
References
Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).
Abbott, B. P. et al. GW150914: the advanced LIGO detectors in the era of first discoveries. Phys. Rev. Lett. 116, 131103 (2016).
Abbott, B. P. et al. GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys. Rev. X 9, 031040 (2019).
Abbott, R. et al. GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Phys. Rev. X 11, 021053 (2021).
Abbott, B. P. et al. GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116, 241103 (2016).
Abbott, B. P. et al. GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett. 118, 221101 (2017); erratum 121, 129901 (2018).
Abbott, B. P. et al. GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 119, 141101 (2017).
Abbott, B. P. et al. GW170608: observation of a 19-solar-mass binary black hole coalescence. Astrophys. J. Lett. 851, L35 (2017).
Abbott, R. et al. GW190412: observation of a binary-black-hole coalescence with asymmetric masses. Phys. Rev. D 102, 043015 (2020).
Abbott, R. et al. GW190521: a binary black hole merger with a total mass of 150M⊙. Phys. Rev. Lett. 125, 101102 (2020).
Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).
Abbott, B. P. et al. GW190425: observation of a compact binary coalescence with total mass ~ 3.4M⊙. Astrophys. J. Lett. 892, L3 (2020).
Abbott, R. et al. GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. Astrophys. J. Lett. 896, L44 (2020).
Harry, G. M. Advanced LIGO: the next generation of gravitational wave detectors. Class. Quantum Grav. 27, 084006 (2010).
Aasi, J. et al. Advanced LIGO. Class. Quantum Grav. 32, 074001 (2015).
Acernese, F. et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quantum Grav. 32, 024001 (2015).
Somiya, K. Detector configuration of KAGRA: the Japanese cryogenic gravitational-wave detector. Class. Quantum Grav. 29, 124007 (2012).
Aso, Y. et al. Interferometer design of the KAGRA gravitational wave detector. Phys. Rev. D 88, 043007 (2013).
Danzmann, K. LISA: an ESA cornerstone mission for a gravitational wave observatory. Class. Quantum Grav. 14, 1399 (1997).
Amaro-Seoane, P. et al. Laser Interferometer Space Antenna. Preprint at http://arxiv.org/abs/1702.00786 (2017).
Seto, N., Kawamura, S. & Nakamura, T. Possibility of direct measurement of the acceleration of the universe using 0.1-Hz band laser interferometer gravitational wave antenna in space. Phys. Rev. Lett. 87, 221103 (2001).
Kawamura, S. et al. The Japanese space gravitational wave antenna DECIGO. Class. Quantum Grav. 23, S125 (2006).
Kawamura, S. et al. The Japanese space gravitational wave antenna: DECIGO. Class. Quantum Grav. 28, 094011 (2011).
Luo, J. et al. TianQin: a space-borne gravitational wave detector. Class. Quantum Grav. 33, 035010 (2016).
Hu, W.-R. & Wu, Y.-L. The Taiji program in space for gravitational wave physics and the nature of gravity. Natl Sci. Rev. 4, 685–686 (2017).
Armano, M. et al. Sub-Femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results. Phys. Rev. Lett. 116, 231101 (2016).
Armano, M. et al. Charge-induced force-noise on free-falling test masses: results from LISA Pathfinder. Phys. Rev. Lett. 118, 171101 (2017).
Armano, M. et al. Beyond the required LISA free-fall performance: new LISA Pathfinder results down to 20μHz. Phys. Rev. Lett. 120, 061101 (2018).
Armano, M. et al. LISA Pathfinder performance confirmed in an open-loop configuration: results from the free-fall actuation mode. Phys. Rev. Lett. 123, 111101 (2019).
Armano, M. et al. Temperature stability in the sub-milliHertz band with LISA Pathfinder. Mon. Not. R. Astron. Soc. 486, 3368 (2019).
Armano, M. et al. Sensor noise in LISA Pathfinder: in-flight performance of the optical test mass readout. Phys. Rev. Lett. 126, 131103 (2021).
Kawamura, S. et al. Current status of space gravitational wave antenna DECIGO and B-DECIGO. Preprint at http://arxiv.org/abs/2006.13545 (2020).
Hellings, R. et al. A Low-Cost High-Performance Space Gravitational Astronomy Mission (PCOS, NASA, 2012); https://pcos.gsfc.nasa.gov/studies/rfi/GWRFI-0007-Hellings.pdf
McWilliams, S. T. Geostationary Antenna for Disturbance-Free Laser Interferometry (GADFLI). Preprint at http://arxiv.org/abs/1111.3708 (2011).
Tinto, M., DeBra, D., Buchman, S. & Tilley, S. gLISA: geosynchronous laser interferometer space antenna concepts with off the-shelf satellites. Rev. Sci. Instrum. 86, 014501 (2015).
Zhang, C., Gong, Y., Liu, H., Wang, B. & Zhang, C. Sky localization of space-based gravitational wave detectors. Phys. Rev. D 103, 103013 (2021).
Zhang, C., Gong, Y., Wang, B. & Zhang, C. Accuracy of parameter estimations with a spaceborne gravitational wave observatory. Phys. Rev. D 103, 104066 (2021).
Amaro-Seoane, P. & Santamaria, L. Detection of IMBHs with ground-based gravitational wave observatories: a biography of a binary of black holes, from birth to death. Astrophys. J. 722, 1197 (2010).
Key, J. S. & Cornish, N. J. Characterizing the gravitational wave signature from cosmic string cusps. Phys. Rev. D 79, 043014 (2009).
Sesana, A. Prospects for multiband gravitational-wave astronomy after GW150914. Phys. Rev. Lett. 116, 231102 (2016).
Nandra, K. et al. The hot and energetic Universe: a white paper presenting the science theme motivating the Athena+ mission. Preprint at http://arxiv.org/abs/1306.2307 (2013).
McGee, S., Sesana, A. & Vecchio, A. Linking gravitational waves and X-ray phenomena with joint LISA and Athena observations. Nat. Astron. 4, 26–31 (2020).
Lindegren, L. & Perryman, M. A. C. GAIA: global astrometric interferometer for astrophysics. Astron. Astrophys. Suppl. Ser. 116, 579–595 (1996).
Abell, P. A. et al. LSST Science Book, Version 2.0. Preprint at http://arxiv.org/abs/0912.0201 (2009).
Smits, R. et al. Pulsar searches and timing with the square kilometre array. Astron. Astrophys. 493, 1161 (2009).
Evans, C. et al. ELT-MOS white paper: science overview and requirements. Preprint at http://arxiv.org/abs/1303.0029 (2013).
Ruan, W.-H., Liu, C., Guo, Z.-K., Wu, Y.-L. & Cai, R.-G. The LISA–Taiji network. Nat. Astron. 4, 108–109 (2020).
Wang, G., Ni, W.-T. & Han, W.-B. Revisiting time delay interferometry for unequal-arm LISA and TAIJI. Preprint at http://arxiv.org/abs/2008.05812 (2020).
Wang, R. et al. Hubble parameter estimation via dark sirens with the LISA-Taiji network. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwab0542 (2021).
Kramer, M. & Champion, D. J. The European pulsar timing array and the large European array for pulsars. Class. Quantum Grav. 30, 224009 (2013).
Jenet, F. et al. The North American Nanohertz Observatory for Gravitational Waves. Preprint at http://arxiv.org/abs/0909.1058 (2009).
Hobbs, G. B. et al. Gravitational wave detection using pulsars: status of the Parkes Pulsar Timing Array project. Publ. Astron. Soc. Austr. 26, 103–109 (2009).
Hobbs, G. et al. The role of FAST in pulsar timing arrays. Res. Astron. Astrophys. 19, 020 (2019).
Hobbs, G. et al. The international pulsar timing array project: using pulsars as a gravitational wave detector. Class. Quantum Grav. 27, 084013 (2010).
Guth, A. H. The inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981).
Starobinsky, A. A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99–102 (1980).
Albrecht, A. & Steinhardt, P. J. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220 (1982).
Linde, A. D. Chaotic inflation. Phys. Lett. B 129, 177–181 (1983).
Sato, K. First order phase transition of a vacuum and expansion of the universe. Mon. Not. R. Astron. Soc. 195, 467–479 (1981).
Aghanim, N. et al. Planck 2018 results. I. Overview and the cosmological legacy of planck. Astron. Astrophys. 641, A1 (2020).
Ade, P. A. R. et al. BICEP2/Keck array x: constraints on primordial gravitational waves using Planck, WMAP, and new BICEP2/Keck observations through the 2015 season. Phys. Rev. Lett. 121, 221301 (2018).
Ahmed, Z. et al. BICEP3: a 95GHz refracting telescope for degree-scale CMB polarization. Proc. SPIE Int. Soc. Opt. Eng. 9153, 91531N (2014).
Bleem, L. et al. An overview of the SPTpol experiment. J. Low Temp. Phys. 167, 859 (2012).
Suzuki, A. et al. The POLARBEAR-2 and the simons array experiment. J. Low Temp. Phys. 184, 805 (2016).
Cai, Y.-F. & Zhang, X. Probing the origin of our universe through primordial gravitational waves by Ali CMB project. Sci. China Phys. Mech. Astron. 59, 670431 (2016).
Sutin, B. M. et al. PICO - the probe of inflation and cosmic origins. Proc. SPIE 10698, 106984F (2018).
Matsumura, T. et al. Mission design of LiteBIRD. J. Low Temp. Phys. 176, 733–740 (2014).
Abazajian, K. et al. CMB-S4: forecasting constraints on primordial gravitational waves. Preprint at http://arxiv.org/abs/2008.12619 (2020).
Israel, G. L. et al. RX J0806.3+1527: a double degenerate binary with the shortest known orbital period (321s). Astron. Astrophys. 386, L13 (2002).
Barros, S. C. C. et al. Geometrical constraints upon the unipolar model of V407 Vul and RX J0806.3+1527. Mon. Not. R. Astron. Soc. 357, 1306–1312 (2005).
Roelofs, G. H. A. et al. Spectroscopic evidence for a 5.4-minute orbital period in HM Cancri. Astrophys. J. Lett. 711, L138 (2010).
Esposito, P., Israel, G. L., Dall’Osso, S. & Covino, S. Swift X-ray and ultraviolet observations of the shortest orbital period double-degenerate system RX J0806.3+1527 (HM Cnc). Astron. Astrophys. 561, A117 (2014).
Kupfer, T. et al. LISA verification binaries with updated distances from Gaia Data Release 2. Mon. Not. R. Astron. Soc. 480, 302–309 (2018).
Ye, B. et al. Optimizing orbits for TianQin. Int. J. Mod. Phys. D 28, 1950121 (2019).
Tan, Z. T., Ye, B. & Zhang, X. Impact of orbital orientations and radii on TianQin constellation stability. Int. J. Mod. Phys. D 29, 2050056 (2020).
Zhang, X. et al. Effect of Earth-Moon’s gravity on TianQin’s range acceleration noise. Phys. Rev. D 103, 062001 (2021).
Ye, B., Zhang, X., Ding, Y. & Meng, Y. Eclipse avoidance in TianQin orbit selection. Phys. Rev. D 103, 042007 (2021).
Huang, S.-J. et al. Science with the TianQin observatory: preliminary results on galactic double white dwarf binaries. Phys. Rev. D 102, 063021 (2020).
Liu, S., Hu, Y.-M., Zhang, J.-D. & Mei, J. Science with the TianQin observatory: preliminary results on stellar-mass binary black holes. Phys. Rev. D 101, 103027 (2020).
Wang, H.-T. et al. Science with the TianQin observatory: preliminary results on massive black hole binaries. Phys. Rev. D 100, 043003 (2019).
Shi, C. et al. Science with the TianQin observatory: preliminary results on testing the no-hair theorem with ringdown signals. Phys. Rev. D 100, 044036 (2019).
Bao, J. et al. Constraining modified gravity with ringdown signals: an explicit example. Phys. Rev. D 100, 084024 (2019).
Feng, W.-F., Wang, H.-T., Hu, X.-C., Hu, Y.-M. & Wang, Y. Preliminary study on parameter estimation accuracy of supermassive black hole binary inspirals for TianQin. Phys. Rev. D 99, 123002 (2019).
Fan, H.-M., Hu, Y.-M. & Barausse, E. et al. Science with the TianQin observatory: preliminary result on extreme-mass-ratio inspirals. Phys. Rev. D 102, 063016 (2020).
Di, H. & Gong, Y. Primordial black holes and second order gravitational waves from ultra-slow-roll inflation. J. Cosmol. Astropart. Phys. 2018, 007 (2018).
Lin, J. et al. Primordial black holes and secondary gravitational waves from k and G inflation. Phys. Rev. D 101, 103515 (2020).
Hu, Y.-M., Mei, J. & Luo, J. Science prospects for space-borne gravitational-wave missions. Natl Sci. Rev. 4, 683–684 (2017).
Ellis, J. & Lewicki, M. Cosmic string interpretation of NANOGrav pulsar timing data. Phys. Rev. Lett. 126, 041304 (2021).
Mei, J. et al. The TianQin project: current progress on science and technology. Prog. Theor. Exp. Phys. 2021, 05A107 (2021).
Luo, J. et al. The first round result from the TianQin-1 satellite. Class. Quantum Grav. 37, 185013 (2020).
Ruan, W.-H., Guo, Z.-K., Cai, R.-G. & Zhang, Y.-Z. Taiji program: gravitational-wave sources. Int. J. Mod. Phys. A 35, 2050075 (2020).
Luo, Z., Guo, Z., Jin, G., Wu, Y. & Hu, W. A brief analysis to Taiji: science and technology. Results Phys. 16, 102918 (2020).
Luo, Z., Wang, Y., Wu, Y., Hu, W. & Jin, G. The Taiji program: a concise overview. Prog. Theor. Exp. Phys. 2021, 05A108 (2021).
Crowder, J. & Cornish, N. J. Beyond LISA: exploring future gravitational wave missions. Phys. Rev. D 72, 083005 (2005).
Ruan, W.-H., Liu, C., Guo, Z.-K., Wu, Y.-L. & Cai, R.-G. The LISA-Taiji network: precision localization of massive black hole binaries. Research 2021, 6014164 (2021).
Wang, G., Ni, W.-T., Han, W.-B., Yang, S.-C. & Zhong, X.-Y. Numerical simulation of sky localization for LISA-TAIJI joint observation. Phys. Rev. D 102, 024089 (2020).
Omiya, H. & Seto, N. Searching for anomalous polarization modes of the stochastic gravitational wave background with LISA and Taiji. Phys. Rev. D 102, 084053 (2020).
Orlando, G., Pieroni, M. & Ricciardone, A. Measuring parity violation in the stochastic gravitational wave background with the LISA-Taiji network. J. Cosmol. Astropart. Phys. 2021, 069 (2021).
Wang, G. & Han, W.-B. Observing gravitational wave polarizations with the LISA-TAIJI network. Phys. Rev. D 103, 064021 (2021).
Yunes, N. & Pretorius, F. Fundamental theoretical bias in gravitational wave astrophysics and the parameterized post-einsteinian framework. Phys. Rev. D 80, 122003 (2009).
Shuman, K. J. & Cornish, N. J. Massive black hole binaries and where to find them with dual detector networks. Preprint at http://arxiv.org/abs/2105.02943 (2021).
Yagi, K. & Seto, N. Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries. Phys. Rev. D 83, 044011 (2011); erratum 95, 109901 (2017).
Moore, C. J., Taylor, S. R. & Gair, J. R. Estimating the sensitivity of pulsar timing arrays. Class. Quantum Grav. 32, 055004 (2015).
Acknowledgements
This research was supported by the National Key Research and Development Program of China under grant numbers 2020YFC2201504 and 2020YFC2201400, the National Natural Science Foundation of China under grant numbers 11875136 and 12075202 and the Major Program of the National Natural Science Foundation of China under grant number 11690021. B.W. acknowledges the support from Shanghai Education Commission. J.L. acknowledges support from the Guangdong Major Project of Basic and Applied Basic Research under grant number 2019B030302001.
Author information
Authors and Affiliations
Contributions
All authors contributed to the work presented in this paper. Y.G. analysed the data, contributed analysis tools and wrote the paper. J.L. conceived TianQin and reviewed the paper. B.W. contributed materials and wrote the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Astronomy thanks Neil Cornish and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Gong, Y., Luo, J. & Wang, B. Concepts and status of Chinese space gravitational wave detection projects. Nat Astron 5, 881–889 (2021). https://doi.org/10.1038/s41550-021-01480-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-021-01480-3
This article is cited by
-
Constraint on the mass of graviton with gravitational waves
Science China Physics, Mechanics & Astronomy (2023)