Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The origin of galaxy colour bimodality in the scatter of the stellar-to-halo mass relation

An Author Correction to this article was published on 28 July 2021

This article has been updated

Abstract

Recent observations reveal that, at a given stellar mass, blue galaxies tend to live in haloes with lower mass, while red galaxies live in more massive host haloes. The physical driver behind this is still unclear because theoretical models predict that, at the same halo mass, galaxies with high stellar masses tend to live in early-formed haloes, which naively leads to the opposite trend. Here, we show that the Simba simulation quantitatively reproduces the colour bimodality in the stellar-to-halo mass relation and reveals an inverse relationship between halo formation time and galaxy transition time. It suggests that the origin of this bimodality is rooted in the intrinsic variations of the cold gas content due to halo assembly bias. Simba’s stellar-to-halo mass bimodality quantitatively relies on two aspects of its input physics: (1) jet-mode feedback from active galactic nuclei, which quenches galaxies and sets the qualitative trend, and (2) X-ray feedback from active galactic nuclei, which fully quenches galaxies and yields better agreement with observations. The interplay between the growth of cold gas and the quenching from active galactic nuclei in Simba results in the observed stellar-to-halo mass bimodality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The SHMR at z = 0 from the Simba simulation, separated into red and blue galaxies, compared to observational results.
Fig. 2: The SHMR from the Simba simulation.
Fig. 3: The evolution track of the SHMR.
Fig. 4: The evolution of the gas fraction.
Fig. 5: The correlation between galaxy transition time with crossing time and AGN jet-on time.
Fig. 6: The SHMR of three simulations with different baryon models.

Similar content being viewed by others

Data availability

The Simba simulation snapshots with Caesar halo and galaxy catalogues are publicly available at http://simba.roe.ac.uk/. The processed source data for producing the figures in this paper are available at the author’s repository: https://bitbucket.org/WeiguangCui/ms-mhalo-scatter/src/master/.

Code availability

The Simba simulation is run with a private version of Gizmo, which is available from the corresponding author upon reasonable request. The galaxy catalogue of the Simba simulation is produced by Caesar, which is publicly available at https://github.com/dnarayanan/caesar. The detailed analysis pipeline scripts are available in the author’s repository: https://bitbucket.org/WeiguangCui/ms-mhalo-scatter/src/master/.

Change history

References

  1. Wechsler, R. H. & Tinker, J. L. The connection between galaxies and their dark matter halos. Annu. Rev. Astron. Astrophys. 56, 435–487 (2018).

    Article  ADS  Google Scholar 

  2. Moster, B. P., Naab, T. & White, S. D. M. Galactic star formation and accretion histories from matching galaxies to dark matter haloes. Mon. Not. R. Astron. Soc. 428, 3121–3138 (2013).

    Article  ADS  Google Scholar 

  3. Behroozi, P. S., Wechsler, R. H. & Conroy, C. The average star formation histories of galaxies in dark matter halos from z = 0–8. Astrophys. J. 770, 57 (2013).

    Article  ADS  Google Scholar 

  4. Croton, D. J. et al. The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 365, 11–28 (2006).

    Article  ADS  Google Scholar 

  5. Somerville, R. S., Hopkins, P. F., Cox, T. J., Robertson, B. E. & Hernquist, L. A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei. Mon. Not. R. Astron. Soc. 391, 481–506 (2008).

    Article  ADS  Google Scholar 

  6. Guo, Q. et al. From dwarf spheroidals to cD galaxies: simulating the galaxy population in a ΛCDM cosmology. Mon. Not. R. Astron. Soc. 413, 101–131 (2011).

    Article  ADS  Google Scholar 

  7. Henriques, B. M. B. et al. Galaxy formation in the Planck cosmology I. Matching the observed evolution of star formation rates, colours and stellar masses. Mon. Not. R. Astron. Soc. 451, 2663–2680 (2015).

    Article  ADS  Google Scholar 

  8. Croton, D. J. et al. Semi-analytic galaxy evolution (SAGE): model calibration and basic results. Astrophys. J. Suppl. Ser. 222, 22 (2016).

    Article  ADS  Google Scholar 

  9. Vogelsberger, M. et al. Introducing the Illustris project: simulating the coevolution of dark and visible matter in the Universe. Mon. Not. R. Astron. Soc. 444, 1518–1547 (2014).

    Article  ADS  Google Scholar 

  10. Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 446, 521–554 (2015).

    Article  ADS  Google Scholar 

  11. Pillepich, A. et al. First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies. Mon. Not. R. Astron. Soc. 475, 648–675 (2018).

    Article  ADS  Google Scholar 

  12. Somerville, R. S. & Davé, R. Physical models of galaxy formation in a cosmological framework. Annu. Rev. Astron. Astrophys. 53, 51–113 (2015).

    Article  ADS  Google Scholar 

  13. Strateva, I. et al. Color separation of galaxy types in the Sloan Digital Sky Survey imaging data. Astron. J. 122, 1861–1874 (2001).

    Article  ADS  Google Scholar 

  14. Baldry, I. K. et al. Quantifying the bimodal color–magnitude distribution of galaxies. Astrophys. J. 600, 681–694 (2004).

    Article  ADS  Google Scholar 

  15. Balogh, M. L. et al. The bimodal galaxy color distribution: dependence on luminosity and environment. Astrophys. J. Lett. 615, L101–L104 (2004).

    Article  ADS  Google Scholar 

  16. More, S. et al. Satellite kinematics III. Halo masses of central galaxies in SDSS. Mon. Not. R. Astron. Soc. 410, 210–226 (2011).

    Article  ADS  Google Scholar 

  17. Wojtak, R. & Mamon, G. A. Physical properties underlying observed kinematics of satellite galaxies. Mon. Not. R. Astron. Soc. 428, 2407–2417 (2013).

    Article  ADS  Google Scholar 

  18. Velander, M. et al. CFHTLenS: the relation between galaxy dark matter haloes and baryons from weak gravitational lensing. Mon. Not. R. Astron. Soc. 437, 2111–2136 (2014).

    Article  ADS  Google Scholar 

  19. Mandelbaum, R. et al. Strong bimodality in the host halo mass of central galaxies from galaxy–galaxy lensing. Mon. Not. R. Astron. Soc. 457, 3200–3218 (2016).

    Article  ADS  Google Scholar 

  20. Posti, L. & Fall, S. M. Dynamical evidence for a morphology-dependent relation between the stellar and halo masses of galaxies. A&A 649, 119–135 (2021).

    Article  ADS  Google Scholar 

  21. Moster, B. P., Naab, T. & White, S. D. M. EMERGE – an empirical model for the formation of galaxies since z ~ 10. Mon. Not. R. Astron. Soc. 477, 1822–1852 (2018).

    Article  ADS  Google Scholar 

  22. Moster, B. P., Naab, T. & White, S. D. M. EMERGE – empirical constraints on the formation of passive galaxies. Mon. Not. R. Astron. Soc. 499, 4748–4767 (2020).

    Article  ADS  Google Scholar 

  23. Zehavi, I. et al. The impact of assembly bias on the galaxy content of dark matter halos. Astrophys. J. 853, 84 (2018).

    Article  ADS  Google Scholar 

  24. Matthee, J. et al. The origin of scatter in the stellar mass–halo mass relation of central galaxies in the EAGLE simulation. Mon. Not. R. Astron. Soc. 465, 2381–2396 (2017).

    Article  ADS  Google Scholar 

  25. Wang, H., Mo, H. J., Jing, Y. P., Yang, X. & Wang, Y. Internal properties and environments of dark matter haloes. Mon. Not. R. Astron. Soc. 413, 1973–1990 (2011).

    Article  ADS  Google Scholar 

  26. Lim, S. H., Mo, H. J., Wang, H. & Yang, X. An observational proxy of halo assembly time and its correlation with galaxy properties. Mon. Not. R. Astron. Soc. 455, 499–510 (2016).

    Article  ADS  Google Scholar 

  27. Matthee, J. & Schaye, J. The origin of scatter in the star formation rate–stellar mass relation. Mon. Not. R. Astron. Soc. 484, 915–932 (2019).

    Article  ADS  Google Scholar 

  28. Zu, Y. et al. Does concentration drive the scatter in the stellar-to-halo mass relation of galaxy clusters? Preprint at https://arxiv.org/abs/2012.08629 (2020).

  29. Rodríguez-Puebla, A. et al. The stellar-to-halo mass relation of local galaxies segregates by color. Astrophys. J. 799, 130 (2015).

    Article  ADS  Google Scholar 

  30. Davé, R. et al. SIMBA: cosmological simulations with black hole growth and feedback. Mon. Not. R. Astron. Soc. 486, 2827–2849 (2019).

    Article  ADS  Google Scholar 

  31. Tojeiro, R. et al. Galaxy and mass assembly (GAMA): halo formation times and halo assembly bias on the cosmic web. Mon. Not. R. Astron. Soc. 470, 3720–3741 (2017).

    Article  ADS  Google Scholar 

  32. Feldmann, R., Faucher-Giguère, C.-A. & Kereš, D. The Galaxy-Halo connection in low-mass halos. Astrophys. J. 871, L21 (2019).

    Article  ADS  Google Scholar 

  33. Hirschmann, M. et al. The stellar accretion origin of stellar population gradients in massive galaxies at large radii. Mon. Not. R. Astron. Soc. 449, 528–550 (2015).

    Article  ADS  Google Scholar 

  34. Bradshaw, C., Leauthaud, A., Hearin, A., Huang, S. & Behroozi, P. Physical correlations of the scatter between galaxy mass, stellar content and halo mass. Mon. Not. R. Astron. Soc. 493, 337–350 (2020).

    Article  ADS  Google Scholar 

  35. Kere, D., Katz, N., Weinberg, D. H. & Dave, R. How do galaxies get their gas? Mon. Not. R. Astron. Soc. 363, 2–28 (2005).

    Article  ADS  Google Scholar 

  36. Dekel, A. et al. Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature 457, 451–454 (2009).

    Article  ADS  Google Scholar 

  37. Zu, Y. & Mandelbaum, R. Mapping stellar content to dark matter haloes. II. Halo mass is the main driver of galaxy quenching. Mon. Not. R. Astron. Soc. 457, 4360–4383 (2016).

    Article  ADS  Google Scholar 

  38. Wang, H. et al. ELUCID. IV. Galaxy quenching and its relation to halo mass, environment and assembly bias. Astrophys. J. 852, 31 (2018).

    Article  ADS  Google Scholar 

  39. Guo, H., Jones, M.-G., Wang, J. & Lin, L. Star formation and quenching of central galaxies from stacked HI measurements. Preprint at https://arXiv:2105.13505 (2021).

  40. Tinker, J. L. Testing galaxy quenching theories with scatter in the stellar-to-halo mass relation. Mon. Not. R. Astron. Soc. 467, 3533–3541 (2017).

    Article  ADS  Google Scholar 

  41. Mitra, S., Davé, R., Simha, V. & Finlator, K. Equilibrium model prediction for the scatter in the star-forming main sequence. Mon. Not. R. Astron. Soc. 464, 2766–2776 (2017).

    Article  ADS  Google Scholar 

  42. Tacconi, L. J. et al. High molecular gas fractions in normal massive star-forming galaxies in the young Universe. Nature 463, 781–784 (2010).

    Article  ADS  Google Scholar 

  43. Davé, R., Finlator, K. & Oppenheimer, B. D. An analytic model for the evolution of the stellar, gas and metal content of galaxies. Mon. Not. R. Astron. Soc. 421, 98–107 (2012).

    ADS  Google Scholar 

  44. Robson, D. & Davé, R. X-ray emission from hot gas in galaxy groups and clusters in SIMBA. Mon. Not. R. Astron. Soc. 498, 3061–3076 (2020).

    Article  ADS  Google Scholar 

  45. Appleby, S., Davé, R., Sorini, D., Storey-Fisher, K. & Smith, B. The low redshift circumgalactic medium in SIMBA. Preprint at https://arxiv.org/abs/2102.10126 (2021).

  46. Davé, R., Finlator, K. & Oppenheimer, B. D. Galaxy evolution in cosmological simulations with outflows. II. Metallicities and gas fractions. Mon. Not. R. Astron. Soc. 416, 1354–1376 (2011).

    Article  ADS  Google Scholar 

  47. Davies, J. J., Crain, R. A., Oppenheimer, B. D. & Schaye, J. The quenching and morphological evolution of central galaxies is facilitated by the feedback-driven expulsion of circumgalactic gas. Mon. Not. R. Astron. Soc. 491, 4462–4480 (2020).

    Article  ADS  Google Scholar 

  48. Kennicutt, R. C. & Evans, N. J. Star formation in the Milky Way and nearby galaxies. Annu. Rev. Astron. Astrophys. 50, 531–608 (2012).

    Article  ADS  Google Scholar 

  49. Davé, R., Thompson, R. & Hopkins, P. F. MUFASA: galaxy formation simulations with meshless hydrodynamics. Mon. Not. R. Astron. Soc. 462, 3265–3284 (2016).

    Article  ADS  Google Scholar 

  50. Muratov, A. L. et al. Gusty, gaseous flows of FIRE: galactic winds in cosmological simulations with explicit stellar feedback. Mon. Not. R. Astron. Soc. 454, 2691–2713 (2015).

    Article  ADS  Google Scholar 

  51. Anglés-Alcázar, D. et al. The cosmic baryon cycle and galaxy mass assembly in the FIRE simulations. Mon. Not. R. Astron. Soc. 470, 4698–4719 (2017).

    Article  ADS  Google Scholar 

  52. Anglés-Alcázar, D. et al. Torque-limited growth of massive black holes in galaxies across cosmic time. Astrophys. J. 800, 127 (2015).

    Article  ADS  Google Scholar 

  53. Anglés-Alcázar, D., Davé, R., Faucher-Giguère, C.-A., Özel, F. & Hopkins, P. F. Gravitational torque-driven black hole growth and feedback in cosmological simulations. Mon. Not. R. Astron. Soc. 464, 2840–2853 (2017).

    Article  ADS  Google Scholar 

  54. Choi, E., Ostriker, J. P., Naab, T. & Johansson, P. H. Radiative and momentum-based mechanical active galactic nucleus feedback in a three-dimensional galaxy evolution code. Astrophys. J. 754, 125 (2012).

    Article  ADS  Google Scholar 

  55. Katsianis, A. et al. The specific star formation rate function at different mass scales and quenching: a comparison between cosmological models and SDSS. Mon. Not. R. Astron. Soc. 500, 2036–2048 (2021).

    Article  ADS  Google Scholar 

  56. Thomas, N., Davé, R., Anglés-Alcázar, D. & Jarvis, M. Black hole – galaxy correlations in SIMBA. Mon. Not. R. Astron. Soc. 487, 5764–5780 (2019).

    Article  ADS  Google Scholar 

  57. Li, Q., Narayanan, D. & Davé, R. The dust-to-gas and dust-to-metal ratio in galaxies from z = 0 to 6. Mon. Not. R. Astron. Soc. 490, 1425–1436 (2019).

    Article  ADS  Google Scholar 

  58. Appleby, S., Davé, R., Kraljic, K., Anglés-Alcázar, D. & Narayanan, D. The impact of quenching on galaxy profiles in the SIMBA simulation. Mon. Not. R. Astron. Soc. 494, 6053–6071 (2020).

    Article  ADS  Google Scholar 

  59. Diemer, B., More, S. & Kravtsov, A. V. The pseudo-evolution of halo mass. Astrophys. J. 766, 25 (2013).

    Article  ADS  Google Scholar 

  60. Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486–506 (2009).

    Article  ADS  Google Scholar 

  61. Conroy, C. & Gunn, J. E. The propagation of uncertainties in stellar population synthesis modeling. III. Model calibration, comparison and evaluation. Astrophys. J. 712, 833–857 (2010).

    Article  ADS  Google Scholar 

  62. Cui, W. et al. Characterizing diffused stellar light in simulated galaxy clusters. Mon. Not. R. Astron. Soc. 437, 816–830 (2014).

    Article  ADS  Google Scholar 

  63. Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

    Article  ADS  Google Scholar 

  64. Oliphant, T. E. Python for scientific computing. Comput. Sci. Eng. 9, 10–20 (2007).

    Article  Google Scholar 

  65. Millman, K. J. & Aivazis, M. Python for scientists and engineers. Comput. Sci. Eng. 13, 9–12 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful discussions with M. van Daalen, J. Matthee, K. Kraljic, D. Sorini, N. Thomas and Y. Zu. We thank R. Thompson for developing Caesar, and the yt team for development and support of yt. W.C. acknowledges the support from the China Manned Space Program through its Space Application System. W.C. and J.A.P. acknowledge support from the European Research Council under grant No. 670193 (the COSFORM project). R.D. acknowledges support from the Wolfson Research Merit Award programme of the UK Royal Society. W.C. and R.D. acknowledge support from the STFC AGP Grant ST/V000594/1. D.A.-A. acknowledges support by NSF grant AST-2009687 and by the Flatiron Institute, which is supported by the Simons Foundation. X.Y. acknowledges support from the National Science Foundation of China (grant Nos. 11833005, 11890692 and 11621303). This work used the DiRAC@Durham facility managed by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility. The equipment was funded by BEIS capital funding via STFC capital grants ST/P002293/1, ST/R002371/1 and ST/S002502/1, Durham University and STFC operations grant ST/R000832/1. DiRAC is part of the National e-Infrastructure.

Author information

Authors and Affiliations

Authors

Contributions

W.C. conceived the project. R.D. performed the simulation with contributions from D.A.-A. and provided the Caesar catalogue. W.C. designed and performed the analysis. W.C., R.D., J.A.P, D.A.-A. and X.Y. interpreted the results. W.C. wrote the manuscript with contributions from R.D., J.A.P, D.A.-A. and X.Y.

Corresponding author

Correspondence to Weiguang Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, W., Davé, R., Peacock, J.A. et al. The origin of galaxy colour bimodality in the scatter of the stellar-to-halo mass relation. Nat Astron 5, 1069–1076 (2021). https://doi.org/10.1038/s41550-021-01404-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01404-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing