Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A peculiarly short-duration gamma-ray burst from massive star core collapse


Gamma-ray bursts (GRBs) have been phenomenologically classified into long and short populations based on the observed bimodal distribution of duration1. Multi-wavelength and multi-messenger observations in recent years have revealed that in general long GRBs originate from massive star core collapse events2, whereas short GRBs originate from binary neutron star mergers3. It has been known that the duration criterion is sometimes unreliable, and multi-wavelength criteria are needed to identify the physical origin of a particular GRB4. Some apparently long GRBs have been suggested to have a neutron star merger origin5, whereas some apparently short GRBs have been attributed to genuinely long GRBs6 whose short, bright emission is slightly above the detector’s sensitivity threshold. Here, we report the comprehensive analysis of the multi-wavelength data of the short, bright GRB 200826A. Characterized by a sharp pulse, this burst shows a duration of 1 second and no evidence of an underlying longer-duration event. Its other observational properties such as its spectral behaviours, total energy and host galaxy offset are, however, inconsistent with those of other short GRBs believed to originate from binary neutron star mergers. Rather, these properties resemble those of long GRBs. This burst confirms the existence of short-duration GRBs with stellar core-collapse origin4, and presents some challenges to the existing models.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Temporal properties of GRB 200826A.
Fig. 2: GRB 200826A in energy-related correlations.
Fig. 3: Host properties of GRB 200826A.

Data availability

Processed data are presented in the tables and figures in the paper. Source and optical observational data are available upon reasonable request to the corresponding authors. The Fermi GBM data are publicly available at

Code availability

Upon reasonable request, the code (mostly in Python) used to produce the results and figures will be provided.


  1. 1.

    Kouveliotou, C. et al. Identification of two classes of gamma-ray bursts. Astrophys. J. 413, L101–L104 (1993).

    ADS  Article  Google Scholar 

  2. 2.

    Woosley, S. E. & Bloom, J. S. The supernova–gamma-ray burst connection. Annu. Rev. Astron. Astrophys. 44, 507–556 (2006).

    ADS  Article  Google Scholar 

  3. 3.

    Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848, L12–L70 (2017).

    ADS  Article  Google Scholar 

  4. 4.

    Zhang, B. et al. Discerning the physical origins of cosmological gamma-ray bursts based on multiple observational criteria: the cases of z = 6.7 GRB 080913, z = 8.2 GRB 090423, and some short/hard GRBs. Astrophys. J. 703, 1696–1724 (2009).

    ADS  Article  Google Scholar 

  5. 5.

    Gehrels, N. et al. A new γ-ray burst classification scheme from GRB 060614. Nature 444, 1044–1046 (2006).

    ADS  Article  Google Scholar 

  6. 6.

    Levesque, E. M. et al. GRB 090426: the environment of a rest-frame 0.35-s gamma-ray burst at a redshift of 2.609. Mon. Not. R. Astron. Soc. 401, 963–972 (2010).

    ADS  Article  Google Scholar 

  7. 7.

    Meegan, C. et al. The Fermi Gamma-ray Burst Monitor. Astrophys. J. 702, 791–804 (2009).

    ADS  Article  Google Scholar 

  8. 8.

    Mangan, J., Dunwoody, R., Meegan, C. & Fermi GBM Team. GRB 200826A: Fermi GBM observation. GRB Coord. Netw. 28287 (2020).

  9. 9.

    Ahumada, T. et al. GRB200826A: Zwicky Transient Facility identifies optical afterglow candidate of a Fermi short GRB (Trigger 620108997). GRB Coord. Netw. 28295 (2020).

  10. 10.

    Rothberg, B., Kuhn, O., Veillet, C. & Allanson, S. GRB 200826A. GRB Coord. Netw. 28319 (2020).

  11. 11.

    Ahumada, T., et al. Discovery and confirmation of the shortest gamma ray burst from a collapsar. Preprint at (2020).

  12. 12.

    Lü, H.-J., Zhang, B., Liang, E.-W., Zhang, B.-B. & Sakamoto, T. The ‘amplitude’ parameter of gamma-ray bursts and its implications for GRB classification. Mon. Not. R. Astron. Soc. 442, 1922–1929 (2014).

    ADS  Article  Google Scholar 

  13. 13.

    Antonelli, L. A. et al. GRB 090426: the farthest short gamma-ray burst? Astron. Astrophys. 507, L45–L48 (2009).

    ADS  Article  Google Scholar 

  14. 14.

    Amati, L. et al. Intrinsic spectra and energetics of BeppoSAX gamma-ray bursts with known redshifts. Astron. Astrophys. 390, 81–89 (2002).

    ADS  Article  Google Scholar 

  15. 15.

    Lü, H.-J., Liang, E.-W., Zhang, B.-B. & Zhang, B. A new classification method for gamma-ray bursts. Astrophys. J. 725, 1965–1970 (2010).

    ADS  Article  Google Scholar 

  16. 16.

    Zhang, B. A burst of new ideas. Nature 444, 1010–1011 (2006).

    ADS  Article  Google Scholar 

  17. 17.

    Norris, J. P. et al. Attributes of pulses in long bright gamma-ray bursts. Astrophys. J. 459, 393–412 (1996).

    ADS  Article  Google Scholar 

  18. 18.

    Yi, T.-F., Liang, E.-W., Qin, Y.-P. & Lu, R.-J. On the spectral lags of the short gamma-ray bursts. Mon. Not. R. Astron. Soc. 367, 1751–1756 (2006).

    ADS  Article  Google Scholar 

  19. 19.

    Fruchter, A. S. et al. Long γ-ray bursts and core-collapse supernovae have different environments. Nature 441, 463–468 (2006).

    ADS  Article  Google Scholar 

  20. 20.

    Berger, E. Short-duration gamma-ray bursts. Annu. Rev. Astron. Astrophys. 52, 43–105 (2014).

    ADS  Article  Google Scholar 

  21. 21.

    Li, Y., Zhang, B. & Yuan, Q. A comparative study of long and short GRBs. II. A multiwavelength method to distinguish Type II (massive star) and Type I (compact star) GRBs. Astrophys. J. 897, 154–164 (2020).

    ADS  Article  Google Scholar 

  22. 22.

    Gehrels, N. et al. A short γ-ray burst apparently associated with an elliptical galaxy at redshift z = 0.225. Nature 437, 851–854 (2005).

    ADS  Article  Google Scholar 

  23. 23.

    Li, Y., Zhang, B. & Lü, H.-J. A comparative study of long and short GRBs. I. Overlapping properties. Astrophys. J. 227, 7–38 (2016).

    ADS  Article  Google Scholar 

  24. 24.

    Zhang, B. The Physics of Gamma-Ray Bursts 418–443 (Cambridge Univ. Press, 2018).

  25. 25.

    Belczynski, K., Bulik, T. & Rudak, B. Study of gamma-ray burst binary progenitors. Astrophys. J. 571, 394–412 (2002).

    ADS  Article  Google Scholar 

  26. 26.

    Middleditch, J. A white dwarf merger paradigm for supernovae and gamma-ray bursts. Astrophys. J. 601, L167–L170 (2004).

    ADS  Article  Google Scholar 

  27. 27.

    Vietri, M. & Stella, L. A gamma-ray burst model with small baryon contamination. Astrophys. J. 507, L45–L48 (1998).

    ADS  Article  Google Scholar 

  28. 28.

    Bromberg, O., Nakar, E., Piran, T. & Sari, R. An observational imprint of the Collapsar model of long gamma-ray bursts. Astrophys. J. 749, 110–114 (2012).

    ADS  Article  Google Scholar 

  29. 29.

    Metzger, N. et al. The protomagnetar model for gamma-ray bursts. Mon. Not. R. Astron. Soc. 413, 2031–2056 (2011).

    ADS  Article  Google Scholar 

  30. 30.

    Kluźniak, W. & Ruderman, M. The central engine of gamma-ray bursters. Astrophys. J. 505, L113–L117 (1998).

    ADS  Article  Google Scholar 

  31. 31.

    Zhang, B.-B. et al. A comprehensive analysis of Fermi gamma-ray burst data. I. Spectral components and the possible physical origins of LAT/GBM GRBs. Astrophys. J. 730, 141–173 (2011).

    ADS  Article  Google Scholar 

  32. 32.

    Zhang, B.-B. et al. Transition from fireball to Poynting-flux-dominated outflow in the three-episode GRB 160625B. Nat. Astron. 2, 69–75 (2018).

    ADS  Article  Google Scholar 

  33. 33.

    Zhang, B.-B. et al. A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor. Nat. Commun. 9, 447 (2018).

    ADS  Article  Google Scholar 

  34. 34.

    Goldstein, A. et al. An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. Astrophys. J. 848, L14–L27 (2017).

    ADS  Article  Google Scholar 

  35. 35.

    Wei, J.-J., Zhang, B.-B., Shao, L., Wu, X.-F. & Mészáros, P. A new test of Lorentz invariance violation: the spectral lag transition of GRB 160625B. Astrophys. J. 834, L13–L18 (2017).

    ADS  Article  Google Scholar 

  36. 36.

    Norris, J. P., Marani, G. F. & Bonnell, J. T. Connection between energy-dependent lags and peak luminosity in gamma-ray bursts. Astrophys. J. 534, 248–257 (2000).

    ADS  Article  Google Scholar 

  37. 37.

    Ukwatta, T. N. et al. Spectral lags and the lag–luminosity relation: an investigation with Swift BAT gamma-ray bursts. Astrophys. J. 711, 1073–1086 (2010).

    ADS  Article  Google Scholar 

  38. 38.

    Zhang, B.-B. et al. Unusual central engine activity in the double burst GRB 110709B. Astrophys. J. 748, 132–140 (2012).

    ADS  Article  Google Scholar 

  39. 39.

    Kennicutt, J. Jr. The global Schmidt law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998).

    ADS  Article  Google Scholar 

  40. 40.

    Noll, S. et al. Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample. Astron. Astrophys. 507, 1793–1813 (2009).

    ADS  Article  Google Scholar 

  41. 41.

    Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    ADS  Article  Google Scholar 

  42. 42.

    Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    ADS  Article  Google Scholar 

  43. 43.

    Dale, D. A. et al. A two-parameter model for the infrared/submillimeter/radio spectral energy distributions of galaxies and active galactic nuclei. Astrophys. J. 784, 83 (2014).

    ADS  Article  Google Scholar 

Download references


B.-B.Z. acknowledges support by the National Key Research and Development Programs of China (2018YFA0404204), the National Natural Science Foundation of China (grant nos. 11833003 and U2038105) and the Innovative and Entrepreneurial Talent Program in Jiangsu. Y.-Z.M. is supported by the National Postdoctoral Program for Innovative Talents (grant no. BX20200164). This work was supported in part by the Natural Science Foundation of China (grant nos. U1831135 (X.-H.Z.), 11922301 (H.-J.L.), 12041306 (Y.L.) and U1938201 (X.-G.W.)), the Guangxi Science Foundation (2017GXNSFFA198008 (H.-J.L.), 2017AD22006 (X.-G.W.) and 2016GXNSFFA380006 (X.-G.W.)) and the Bagui Young Scholars Program (H.-J.L.). Part of this work is based on observations made with the GTC installed at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, on the island of La Palma. We also acknowledge the use of public data from the Fermi Science Support Center.

Author information




B.-B.Z. and H.-J.L. initiated the study. B.-B.Z. and B.Z. coordinated the scientific investigations of the event. B.-B.Z., Z.-K.L., Z.-K.P., Y.L., H.-J.L., J.Y., Y.-S.Y., Y.-H.Y., Y.-Z.M. and J.-H.Z. processed and analysed the data. A.J.C.-T. and Y.-D.H. carried out the GTC optical observations. J.-R.M., X.-H.Z. and J.-M.B. carried out the Lijiang 2.4 m optical observations. X.-G.W. and E.-W.L. carried out the LCOGT observations. B.Z. and Z.-G.D. contributed to the theoretical interpretations of the event. B.-B.Z. and B.Z. wrote the paper with contributions from all coauthors and the help of H.-Y.Y. on the format and language.

Corresponding authors

Correspondence to B.-B. Zhang or B. Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Spectral fitting results of GRB 200826A.

The table shows the time-integrated and time-resolved spectral fitting results of GRB 200826A with cutoff power law model.

Extended Data Fig. 2 Spectral fitting results within the interval from T0+0.50s to T0+ 1.60 s.

Spectral fitting results within the interval of T0 + 0.50s ~ T0 + 1.60s. a, observed photon count rate spectra and fitted model of nb(red), n7(blue) and b1(sky blue) detectors. b, de-convolved spectra(black points) and best-fit power law model(red line). c, corner plots and histograms show one and two-dimensional posterior probability distributions of cutoff power-law model parameters at 1-σ (purple contours), 2-σ(yellow contours) and 3-σ(green contours) confidence levels. Red error bars and crosses represent best-fit values with 1-σ uncertainties.

Extended Data Fig. 3 Spectral evolution of GRB 200826A.

Spectral evolution of GRB 200826A. Panels a and b show evolution of the photon index (α) and spectral peak energy (Ep) of the cut-off powelaw model, respectively. Panels c and d show the NaI and BGO light curves. All error bars represent 1-σ uncertainties.

Extended Data Fig. 4 Spectral lag calculation.

Spectral lag calculation. a, light curves in different energy bands(10-20 keV ~ 300-500 keV) which are used to calculate lags. b, energy dependent spectral lag between the lowest energy(10-20 keV) band and any higher energy band. All error bars represent 1-σ uncertainties.

Extended Data Fig. 5 Detailed optical observations.

The table shows the observations of the optical counterpart and host galaxy of GRB 200826A.

Extended Data Fig. 6 X-ray afterglow of GRB 200826A.

X-ray afterglow of GRB 200826A. Black points represents the observed X-ray flux in 0.3-10 keV. The solid orange line shows the broken power-law fitting with slopes α = -1.41\({}_{-0.12}^{+0.24}\), β= -0.43\({}_{-0.22}^{+0.17}\) and a break at tb = \(1.5{1}_{-0.30}^{+0.31}\times 1{0}^{5}\) s. The dashed blue line represents the magnetar spin-down energy injection model parameterized by Lsd = L0(1+t/τ)−2 with L0 = 1044.9ergs−1 and τ = 1.0 × 106s. All error bars represent 1-σ uncertainties. The upper limit is at the 3-σ level.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, BB., Liu, ZK., Peng, ZK. et al. A peculiarly short-duration gamma-ray burst from massive star core collapse. Nat Astron 5, 911–916 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing