Evidence of extensive lunar crust formation in impact melt sheets 4,330 Myr ago

Abstract

Accurately constraining the formation and evolution of the lunar magnesian suite is key to understanding the earliest periods of magmatic crustal building that followed accretion and primordial differentiation of the Moon. However, the origin and evolution of these unique rocks is highly debated. Here, we report on the microstructural characterization of a large (~250-μm) baddeleyite (monoclinic-ZrO2) grain in Apollo troctolite 76535 that preserves quantifiable crystallographic relationships indicative of reversion from a precursor cubic-ZrO2 phase. This observation places important constraints on the formation temperature of the grain (>2,300 °C), which endogenic processes alone fail to reconcile. We conclude that the troctolite crystallized directly from a large, differentiated impact melt sheet 4,328 ± 8 Myr ago. These results suggest that impact bombardment would have played a critical role in the evolution of the earliest planetary crusts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Phase diagram of the ZrO2 system.
Fig. 2: Optical imaging, EBSD data and parent-grain reconstruction for the large baddeleyite grain in Apollo sample 76535.
Fig. 3: Pb–Pb data generated by SIMS analysis of the large reversion twinned baddeleyite grain in troctolite 76535, and comparison with published Sm–Nd7, Rb–Sr7 and Ar–Ar43 chronology for the same rock.

Data availability

The authors declare that data supporting the findings in this study are available within the paper and its Supplementary Information files. All other data are available from the corresponding author upon request.

Code availability

The code that was used for the U–Pb analysis is available from the corresponding author upon request.

References

  1. 1.

    Timms, N. E. et al. Cubic zirconia in >2370 °C impact melt records Earth’s hottest crust. Earth Planet. Sci. Lett. 477, 52–58 (2017).

    ADS  Article  Google Scholar 

  2. 2.

    Cayron, C., Douillard, T., Sibil, A., Fantozzi, G. & Sao-Jao, S. Reconstruction of the cubic and tetragonal parent grains from electron backscatter diffraction maps of monoclinic zirconia. J. Am. Ceram. Soc. 93, 2541–2544 (2010).

    Article  Google Scholar 

  3. 3.

    Sylvester, P., Crowley, J. & Schmitz, M. U–Pb zircon age of Mistastin Lake crater, Labrador, Canada—implications for high-precision dating of small impact melt sheets and the end Eocene extinction. Mineral. Mag. 77, 2295 (2013).

    Google Scholar 

  4. 4.

    White, L. F. et al. Baddeleyite as a widespread and sensitive indicator of meteorite bombardment in planetary crusts. Geology 46, 719–722 (2018).

    ADS  Article  Google Scholar 

  5. 5.

    Hinthorne, J. R., Conrad, R. & Andersen, C. A. Lead–lead age and trace element abundances in lunar troctolite 76535. In Proc. Lunar and Planetary Science Conference Vol. 6, 373–375 (Lunar and Planetary Institute, 1975).

  6. 6.

    Elrado, S. M., McCubbin, F. M. & Shearer, C. K. Jr. Chromite symplectites in Mg-suite troctolite 76535 as evidence for infiltration metasomatism of a lunar layered intrusion. Geochim. Cosmochim. Acta 87, 154–177 (2012).

    ADS  Article  Google Scholar 

  7. 7.

    Borg, L. E., Connelly, J. N., Cassata, W. S., Gaffney, A. M. & Bizzarro, M. Chronological implications for slow cooling of troctolite 76535 and temporal relationships between the Mg-suite and the ferroan anorthosite suite. Geochim. Cosmochim. Acta 201, 377–391 (2017).

    ADS  Article  Google Scholar 

  8. 8.

    Gooley, R., Brett, R., Warner, J. & Smyth, J. A lunar rock of deep crustal origin: sample 76535. Geochim. Cosmochim. Acta 38, 1329–1339 (1974).

    ADS  Article  Google Scholar 

  9. 9.

    Garrick-Bethell, I. et al. Troctolite 76535: a sample of the Moon’s South Pole–Aitken basin? Icarus 338, 113430 (2020).

    Article  Google Scholar 

  10. 10.

    Rubin, A. E. Maskelynite in asteroidal, lunar and planetary basaltic meteorites: an indicator of shock pressure during impact ejection from their parent bodies. Icarus 257, 221–229 (2015).

    ADS  Article  Google Scholar 

  11. 11.

    Warren, P. H. A concise compilation of petrologic information on possibly pristine nonmare Moon rocks. Am. Mineral. 78, 360–376 (1993).

    ADS  Google Scholar 

  12. 12.

    Day, J. M. D., Walker, R. J., James, O. B. & Puchtel, I. S. Osmium isotope and highly siderophile element systematics of the lunar crust. Earth Planet. Sci. Lett. 289, 595–605 (2010).

    ADS  Article  Google Scholar 

  13. 13.

    Elrado, S. M., Draper, D. S. & Shearer, C. K. Jr. Lunar Magma Ocean crystallization revisited: bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite. Geochim. Cosmochim. Acta 75, 3024–3045 (2011).

    ADS  Article  Google Scholar 

  14. 14.

    Shearer, C. K., Elrado, S. M., Petro, N. E., Borg, L. E. & McCubbin, F. M. Origin of the lunar highlands Mg-suite: an integrated petrology, geochemistry, chronology, and remote sensing perspective. Am. Mineral. 100, 294–325 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    Taylor, S. R., Norman, M. D. & Esat, T. M. The Mg-suite and the highland crust: an unsolved enigma. In Proc. Lunar and Planetary Science Conference Vol. 24, 1413–1414 (Lunar and Planetary Institute, 1993).

  16. 16.

    Garrick-Bethell, I., Weiss, B. P., Shuster, D. L., Tikoo, S. M. & Tremblay, M. M. Further evidence for early lunar magnetism from troctolite 76535. J. Geophys. Res. Planets 121, 76–93 (2016).

    Google Scholar 

  17. 17.

    Timms, N. E. et al. A pressure-temperature phase diagram for zircon at extreme conditions. Earth-Sci. Rev. 165, 185–202 (2017).

    ADS  Article  Google Scholar 

  18. 18.

    Cayron, C. ARPGE: a computer program to automatically reconstruct the parent grains from electron backscatter diffraction data. J. Appl. Crystallogr. 40, 1183–1188 (2007).

    Article  Google Scholar 

  19. 19.

    Swab, J. Role of Oxide Additives in Stabilizing Zirconia for Coating Applications (Army Research Laboratory, 2001).

  20. 20.

    Zhang, N., Parmentier, E. M. & Liang, Y. A 3-D numerical study of the thermal evolution of the Moon after cumulate mantle overturn: the importance of rheology and core solidification. J. Geophys. Res. Planets 118, 1789–1804 (2013).

    ADS  Article  Google Scholar 

  21. 21.

    Hurwitz, D. M. & Kring, D. A. Differentiation of the South Pole–Aitken basin impact melt sheet: implications for lunar exploration. J. Geophys. Res. Planets 119, 1110–1133 (2014).

    ADS  Article  Google Scholar 

  22. 22.

    Latypov, R., Chistyakova, S., Grieve, R. & Huhma, H. Evidence for igneous differentiation in Sudbury Igneous Complex and impact-driven evolution. Nat. Commun. 10, 508 (2019).

    ADS  Article  Google Scholar 

  23. 23.

    Canup, R. M. & Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001).

    ADS  Article  Google Scholar 

  24. 24.

    Jacobson, S. A. et al. Highly siderophile elements in the Earth’s mantle as a clock for the moon-forming impact. Nature 508, 84–87 (2014).

    ADS  Article  Google Scholar 

  25. 25.

    Herd, C. D. K. et al. in Microstructural Geochronology: Planetary Records Down to Atom Scale (eds Moser et al.) 137–165 (American Geophysical Union, 2018).

  26. 26.

    White, L. F. et al. Atomic-scale age resolution of planetary events. Nat. Commun. 8, 15597 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Darling, J. R. et al. Variable microstructural response of baddeleyite to shock metamorphism in young basaltic shergottite NWA 5298 and improved U–Pb dating of Solar System events. Earth Planet. Sci. Lett. 444, 1–12 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    Crow, C. A., McKeegan, K. D. & Moser, D. E. Coordinated U–Pb geochronology, trace element, Ti-in-zircon thermometry and microstructural analysis of Apollo zircons. Geochim. Cosmochim. Acta 202, 264–284 (2017).

    ADS  Article  Google Scholar 

  29. 29.

    Borg, L. E., Connelly, J. N., Boyet, M. & Carlson, R. W. Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 477, 70–72 (2011).

    ADS  Article  Google Scholar 

  30. 30.

    Nemchin, A. et al. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nat. Geosci. 2, 133–136 (2009).

    ADS  Article  Google Scholar 

  31. 31.

    Petrus, J. A., Ames, D. E. & Kamber, B. S. On the track of the elusive Sudbury impact: geochemical evidence for a chondrite or comet bolide. Terra Nova 27, 9–20 (2015).

    ADS  Article  Google Scholar 

  32. 32.

    Borg, L. E., Gaffney, A. M. & Shearer, C. K. A review of lunar chronology revealing a preponderance of 4.34-4.37 Ga ages. Meteorit. Planet. Sci. 50, 715–732 (2015).

    ADS  Article  Google Scholar 

  33. 33.

    Hess, P. C. The petrogenesis of lunar troctolites. J. Geophys. Res. 99, 19083–19093 (1994).

    ADS  Article  Google Scholar 

  34. 34.

    O’Connell-Cooper, C. D. & Spray, J. G. Geochemistry of the impact-generated melt sheet at Manicouagan: evidence for fractional crystallization. J. Geophys. Res. Solid Earth 116, B06204 (2011).

    ADS  Google Scholar 

  35. 35.

    Darling, K. R., Hawkesworth, C. J., Storey, C. D. & Lightfoot, P. C. Shallow impact: isotopic insights into crustal contributions to the Sudbury impact melt sheet. Geochim. Cosmochim. Acta 74, 5680–5696 (2010).

    ADS  Article  Google Scholar 

  36. 36.

    Snape, J. F. et al. Ancient volcanism on the Moon: insights from Pb isotopes in the MIL 13317 and Kalahari 009 lunar meteorites. Earth Planet. Sci. Lett. 502, 84–95 (2018).

    ADS  Article  Google Scholar 

  37. 37.

    Elkins-Tanton, L. T., Hager, B. H. & Grove, T. L. Magmatic effects of the lunar late heavy bombardment. Earth Planet. Sci. Lett. 222, 17–27 (2004).

    ADS  Article  Google Scholar 

  38. 38.

    Smith, D. K. & Newkirk, W. The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2. Acta Crystallogr. 18, 983–991 (1965).

    Article  Google Scholar 

  39. 39.

    Cayron, C. GenOVa: a computer program to generate orientational variations. J. Appl. Crystallogr. 40, 1179–1182 (2007).

    Article  Google Scholar 

  40. 40.

    Whitehouse, M. J., Kamber, D. S., Fedo, C. M. & Lepland, A. The importance of combined Pb and S isotope data from early Archaean rocks, southwest Greenland, for the interpretation of S-isotope signatures. Chem. Geol. 222, 112–131 (2005).

    ADS  Article  Google Scholar 

  41. 41.

    Reischmann, T. Precise U/Pb age determination with baddeleyite (ZrO2), a case study from the Phalaborwa igneous complex, South Africa. S. Afr. J. Geol. 98, 1–4 (1995).

    Google Scholar 

  42. 42.

    Steiger, R. H. & Jäger, E. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 36, 359–362 (1977).

    ADS  Article  Google Scholar 

  43. 43.

    Park, J. et al. Newly determined Ar/Ar ages of lunar troctolite 76535. In Proc. Lunar and Planetary Science Conference Vol. 46, 2018 (Lunar and Planetary Institute, 2015).

  44. 44.

    Heaman, L. M. & LeCheminant, A. N. Paragenesis and U–Pb systematics of baddeleyite (ZrO2). Chem. Geol. 110, 95–126 (1993).

    ADS  Article  Google Scholar 

  45. 45.

    Marchi, S. et al. High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nat. Geosci. 6, 303–307 (2013).

    ADS  Article  Google Scholar 

  46. 46.

    Hiesinger, H. et al. New crater counts of the South Pole–Aitken basin. In EGU General Assembly 8410 (European Geosciences Union, 2012).

Download references

Acknowledgements

L.F.W. and A.C. are funded by a Hatch postdoctoral fellowship. A.C. has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 704696 RESOLVE, and M.A.’s contribution to this work was partly funded by the UK Science and Technology Facilities Council (ST/L000776/1 and ST/P000657/1). The NordSIMS facility is supported by Swedish Research Council infrastructure grant 2017-00671 and the Swedish Museum of Natural History; this is NordSIMS publication 609. K.H.J. acknowledges STFC grant ST/M001253 and Royal Society grant UF140190. J.R.D. acknowledges STFC grant ST/S000291/1 and Royal Society Research Grant RG160237. We thank G. Long for conducting colloidal silica polishing of the thin section to facilitate EBSD analysis of the target grain. M.A. thanks NASA CAPTEM for the allocation of polished thin section 76535, 51.

Author information

Affiliations

Authors

Contributions

L.F.W., A.C., J.R.D. and M.A. designed the initial study. L.F.W., A.C., J.R.D. and J.D. conducted EBSD analysis of the baddeleyite grain. C.C. conducted phase reconstruction using the ARPGE and GenOVa software packages. A.C. and M.J.W. conducted SIMS analysis on the baddeleyite grain. All authors discussed the results and interpretation, and commented on the manuscript at all stages.

Corresponding author

Correspondence to L. F. White.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Marc Norman and Jennifer Whitten for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Tables 1–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

White, L.F., Černok, A., Darling, J.R. et al. Evidence of extensive lunar crust formation in impact melt sheets 4,330 Myr ago. Nat Astron (2020). https://doi.org/10.1038/s41550-020-1092-5

Download citation

Further reading