Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Alkali metals in white dwarf atmospheres as tracers of ancient planetary crusts



White dwarfs that accrete the debris of tidally disrupted asteroids1 provide the opportunity to measure the bulk composition of the building blocks, or fragments, of exoplanets2. This technique has established a diversity of compositions comparable to what is observed in the Solar System3, suggesting that the formation of rocky planets is a generic process4. The relative abundances of lithophile and siderophile elements within the planetary debris can be used to investigate whether exoplanets undergo differentiation5, yet the composition studies carried out so far lack unambiguous tracers of planetary crusts6. Here we report the detection of lithium in the atmospheres of four cool (<5,000 K) and old (cooling ages of 5–10 Gyr ago) metal-polluted white dwarfs, of which one also displays photospheric potassium. The relative abundances of these two elements with respect to sodium and calcium strongly suggest that all four white dwarfs have accreted fragments of planetary crusts. We detect an infrared excess in one of the systems, indicating that accretion from a circumstellar debris disk is ongoing. The main-sequence progenitor mass of this star was 4.8 ± 0.2 M, demonstrating that rocky, differentiated planets may form around short-lived B-type stars.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Optical spectra of the four white dwarfs with photospheric lithium.
Fig. 2: Number density abundance ratios of debris-accreting white dwarfs and Solar System benchmarks.
Fig. 3: An infrared excess at WD J2317+1830.

Data availability

The data that support the plots within this paper and other findings of this study are available from the ESO science archive facility, the GTC public archive, ING archive and SDSS database; or from the corresponding author upon reasonable request.

Code availability

The Koester model atmosphere and envelope codes are not publicly available, although details of their internal operation and input physics can be consulted from ref. 15.


  1. 1.

    Jura, M. A tidally disrupted asteroid around the white dwarf G29-38. Astrophys. J. Lett. 584, L91–L94 (2003).

    ADS  Article  Google Scholar 

  2. 2.

    Zuckerman, B., Koester, D., Melis, C., Hansen, B. M. & Jura, M. The chemical composition of an extrasolar minor planet. Astrophys. J. 671, 872–877 (2007).

    ADS  Article  Google Scholar 

  3. 3.

    Gänsicke, B. T. et al. The chemical diversity of exo-terrestrial planetary debris around white dwarfs. Mon. Not. R. Astron. Soc. 424, 333–347 (2012).

    ADS  Article  Google Scholar 

  4. 4.

    Doyle, A. E., Young, E. D., Klein, B., Zuckerman, B. & Schlichting, H. E. Oxygen fugacities of extrasolar rocks: evidence for an Earth-like geochemistry of exoplanets. Science 366, 356–359 (2019).

    ADS  Article  Google Scholar 

  5. 5.

    Zuckerman, B. et al. An aluminum/calcium-rich, iron-poor, white dwarf star: evidence for an extrasolar planetary lithosphere? Astrophys. J. 739, 101 (2011).

    ADS  Article  Google Scholar 

  6. 6.

    Bonsor, A. et al. Are exoplanetesimals differentiated? Mon. Not. R. Astron. Soc. 492, 2683–2697 (2020).

    ADS  Article  Google Scholar 

  7. 7.

    Gaia Collaboration et al. Gaia Data Release 2—summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

  8. 8.

    Gentile Fusillo, N. P. et al. A Gaia Data Release 2 catalogue of white dwarfs and a comparison with SDSS. Mon. Not. R. Astron. Soc. 482, 4570–4591 (2019).

    ADS  Article  Google Scholar 

  9. 9.

    Tremblay, P. E. et al. Gaia white dwarfs within 40 pc: I. Spectroscopic observations of new candidates. Mon. Not. R. Astron. Soc. 497, 130–145 (2020).

    ADS  Article  Google Scholar 

  10. 10.

    Hollands, M. A., Koester, D., Alekseev, V., Herbert, E. L. & Gänsicke, B. T. Cool DZ white dwarfs: I. Identification and spectral analysis. Mon. Not. R. Astron. Soc. 467, 4970–5000 (2017).

    ADS  Google Scholar 

  11. 11.

    Harris, H. C. et al. An initial survey of white dwarfs in the Sloan Digital Sky Survey. Astron. J. 126, 1023–1040 (2003).

    ADS  Article  Google Scholar 

  12. 12.

    Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003).

    ADS  Article  Google Scholar 

  13. 13.

    Debes, J. H., Walsh, K. J. & Stark, C. The link between planetary systems, dusty white dwarfs, and metal-polluted white dwarfs. Astrophys. J. 747, 148 (2012).

    ADS  Article  Google Scholar 

  14. 14.

    Petrovich, C. & Muñoz, D. J. Planetary engulfment as a trigger for white dwarf pollution. Astrophys. J. 834, 116 (2017).

    ADS  Article  Google Scholar 

  15. 15.

    Koester, D. White dwarf spectra and atmosphere models. Mem. Soc. Astron. Ital. 81, 921–931 (2010).

    ADS  Google Scholar 

  16. 16.

    McDonough, W. in Earthquake Thermodynamics and Phase Transformation in the Earth’s Interior (eds Teisseyre, R. & Majewski, E.) 5–24 (Elsevier, 2000).

  17. 17.

    Rudnick, R. L. & Gao, S. in Treatise on Geochemistry Vol. 3, 1–56 (Elsevier, 2003).

  18. 18.

    Koester, D., Kepler, S. O. & Irwin, A. W. New white dwarf envelope models and diffusion—application to DQ white dwarfs. Astron. Astrophys. 635, A103 (2020).

    ADS  Article  Google Scholar 

  19. 19.

    Hollands, M. A., Gänsicke, B. T. & Koester, D. Cool DZ white dwarfs II: compositions and evolution of old remnant planetary systems. Mon. Not. R. Astron. Soc. 477, 93–111 (2018).

    ADS  Article  Google Scholar 

  20. 20.

    Lodders, K. & Fegley, B. Jr Chemistry of the Solar System (RSC, 2011).

  21. 21.

    Koester, D. Accretion and diffusion in white dwarfs. New diffusion timescales and applications to GD 362 and G 29-38. Astron. Astrophys. 498, 517–525 (2009).

    ADS  Article  Google Scholar 

  22. 22.

    Girven, J. et al. Constraints on the lifetimes of disks resulting from tidally destroyed rocky planetary bodies. Astrophys. J. 749, 154 (2012).

    ADS  Article  Google Scholar 

  23. 23.

    Eisenhardt, P. R. M. et al. The CatWISE preliminary catalog: motions from WISE and NEOWISE data. Astrophys. J. Suppl. 247, 69 (2020).

    ADS  Article  Google Scholar 

  24. 24.

    Debes, J. H. et al. A 3 Gyr white dwarf with warm dust discovered via the Backyard Worlds: Planet 9 citizen science project. Astrophys. J. Lett. 872, L25 (2019).

    ADS  Article  Google Scholar 

  25. 25.

    Rafikov, R. R. Metal accretion onto white dwarfs caused by Poynting-Robertson drag on their debris disks. Astrophys. J. Lett. 732, L3 (2011).

    ADS  Article  Google Scholar 

  26. 26.

    Farihi, J. Circumstellar debris and pollution at white dwarf stars. New Astron. Rev. 71, 9–34 (2016).

    ADS  Article  Google Scholar 

  27. 27.

    Cunningham, T., Tremblay, P.-E., Freytag, B., Ludwig, H.-G. & Koester, D. Convective overshoot and macroscopic diffusion in pure-hydrogen-atmosphere white dwarfs. Mon. Not. R. Astron. Soc. 488, 2503–2522 (2019).

    ADS  Article  Google Scholar 

  28. 28.

    Sato, B. et al. Substellar companions to seven evolved intermediate-mass stars. Publ. Astron. Soc. Jpn 64, 135 (2012).

    ADS  Article  Google Scholar 

  29. 29.

    Veras, D. et al. Constraining planet formation around 6-8 M stars. Mon. Not. R. Astron. Soc. 493, 765–775 (2020).

    ADS  Article  Google Scholar 

  30. 30.

    Cummings, J. D., Kalirai, J. S., Tremblay, P. E., Ramirez-Ruiz, E. & Choi, J. The white dwarf initial-final mass relation for progenitor stars from 0.85 to 7.5 M. Astrophys. J. 866, 21 (2018).

    ADS  Article  Google Scholar 

  31. 31.

    Aguilera-Gómez, C., Chanamé, J., Pinsonneault, M. H. & Carlberg, J. K. On lithium-rich red giants. I: engulfment of substellar companions. Astrophys. J. 829, 127 (2016).

    ADS  Article  Google Scholar 

  32. 32.

    Chen, G. et al. The GTC exoplanet transit spectroscopy survey. IX: detection of haze, Na, K, and Li in the super-Neptune WASP-127b. Astron. Astrophys. 616, A145 (2018).

    Article  Google Scholar 

  33. 33.

    Reid, I. N., Liebert, J. & Schmidt, G. D. Discovery of a magnetic DZ white dwarf with Zeeman-split lines of heavy elements. Astrophys. J. Lett. 550, L61–L63 (2001).

    ADS  Article  Google Scholar 

  34. 34.

    Smette, A. et al. Molecfit: a general tool for telluric absorption correction. I: method and application to ESO instruments. Astron. Astrophys. 576, A77 (2015).

    Article  Google Scholar 

  35. 35.

    Kausch, W. et al. Molecfit: a general tool for telluric absorption correction. II: quantitative evaluation on ESO-VLT/X-Shooterspectra. Astron. Astrophys. 576, A78 (2015).

    Article  Google Scholar 

  36. 36.

    Blouin, S. et al. A new generation of cool white dwarf atmosphere models: III. WD J2356-209: accretion of a planetesimal with an unusual composition. Astrophys. J. 872, 188 (2019).

    ADS  Article  Google Scholar 

  37. 37.

    Blouin, S., Allard, N. F., Leininger, T., Gadéa, F. X. & Dufour, P. Line profiles of the calcium I resonance line in cool metal-polluted white dwarfs. Astrophys. J. 875, 137 (2019).

    ADS  Article  Google Scholar 

  38. 38.

    Chambers, K. C. et al. The Pan-STARRS1 Surveys. Preprint at (2016).

  39. 39.

    Alam, S. et al. The eleventh and twelfth data releases of the Sloan Digital Sky Survey: final data from SDSS-III. Astrophys. J. Suppl. 219, 12 (2015).

    ADS  Article  Google Scholar 

  40. 40.

    Wolf, C. et al. SkyMapper southern survey: first data release (DR1). Proc. Astron. Soc. Aust. 35, e010 (2018).

    ADS  Article  Google Scholar 

  41. 41.

    Cutri, R. M. et al. 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003) II/246 (VizieR Online Data Catalog, 2003).

  42. 42.

    Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).

    ADS  Article  Google Scholar 

  43. 43.

    Valentinuzzi, T. et al. WINGS: a wide-field nearby galaxy-cluster survey. III: deep near-infrared photometry of 28 nearby clusters. Astron. Astrophys. 501, 851–864 (2009).

    ADS  Article  Google Scholar 

  44. 44.

    Moretti, A. et al. WINGS data release: a database of galaxies in nearby clusters. Astron. Astrophys. 564, A138 (2014).

    Article  Google Scholar 

  45. 45.

    Dye, S. et al. The UKIRT Hemisphere Survey: definition and J-band data release. Mon. Not. R. Astron. Soc. 473, 5113–5125 (2018).

    ADS  Article  Google Scholar 

  46. 46.

    Cutri, R. M. et al. AllWISE Data Release (Cutri+ 2013) II/328 (VizieR Online Data Catalog, 2013).

  47. 47.

    Fontaine, G., Brassard, P. & Bergeron, P. The potential of white dwarf cosmochronology. Publ. Astron. Soc. Pac. 113, 409–435 (2001).

    ADS  Article  Google Scholar 

  48. 48.

    Hollands, M. A., Gänsicke, B. T. & Koester, D. The incidence of magnetic fields in cool DZ white dwarfs. Mon. Not. R. Astron. Soc. 450, 681–690 (2015).

    ADS  Article  Google Scholar 

  49. 49.

    Gentile Fusillo, N. P. et al. Can magnetic fields suppress convection in the atmosphere of cool white dwarfs? A case study on WD2105-820. Mon. Not. R. Astron. Soc. 473, 3693–3699 (2018).

    ADS  Article  Google Scholar 

  50. 50.

    Tremblay, P. E. et al. On the evolution of magnetic white dwarfs. Astron. J. 812, 19 (2015).

    Article  Google Scholar 

  51. 51.

    Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).

    ADS  Article  Google Scholar 

  52. 52.

    Mainzer, A. et al. Preliminary results from NEOWISE: an enhancement to the Wide-field Infrared Survey Explorer for solar system science. Astrophys. J. 731, 53 (2011).

    ADS  Article  Google Scholar 

  53. 53.

    Blouin, S., Kowalski, P. M. & Dufour, P. Pressure distortion of the H2-He collision-induced absorption at the photosphere of cool white dwarf stars. Astrophys. J. 848, 36 (2017).

    ADS  Article  Google Scholar 

  54. 54.

    Blouin, S. Magnesium abundances in cool metal-polluted white dwarfs. Mon. Not. R. Astron. Soc. 496, 1881–1890 (2020).

    ADS  Article  Google Scholar 

  55. 55.

    Ferlet, R. & Dennefeld, M. Interstellar lithium and the 7Li/6Li ratio in diffuse clouds. Astron. Astrophys. 138, 303–310 (1984).

    ADS  Google Scholar 

  56. 56.

    Ryabchikova, T. A., Piskunov, N. E., Kupka, F. & Weiss, W. W. The Vienna Atomic Line Database: present state and future development. Balt. Astron. 6, 244–247 (1997).

    ADS  Google Scholar 

  57. 57.

    Ryabchikova, T. et al. A major upgrade of the VALD database. Phys. Scr. 90, 054005 (2015).

    ADS  Article  Google Scholar 

  58. 58.

    McCleery, J. et al. Gaia white dwarfs within 40 pc. II: the volume-limited Northern Hemisphere sample. Mon. Not. R. Astron. Soc. 499, 1890–1908 (2020).

    ADS  Article  Google Scholar 

  59. 59.

    Kilic, M. et al. The 100 pc white dwarf sample in the SDSS footprint. Astrophys. J. 898, 84 (2020).

    ADS  Article  Google Scholar 

  60. 60.

    Kowalski, P. M. & Saumon, D. Found: the missing blue opacity in atmosphere models of cool hydrogen white dwarfs. Astrophys. J. Lett. 651, L137–L140 (2006).

    ADS  Article  Google Scholar 

  61. 61.

    Karman, T. et al. Update of the HITRAN collision-induced absorption section. Icarus 328, 160–175 (2019).

    ADS  Article  Google Scholar 

  62. 62.

    Borysow, A., Jorgensen, U. G. & Zheng, C. Model atmospheres of cool, low-metallicity stars: the importance of collision-induced absorption. Astron. Astrophys. 324, 185–195 (1997).

    ADS  Google Scholar 

  63. 63.

    Borysow, A., Jorgensen, U. G. & Fu, Y. High-temperature (1000-7000 K) collision-induced absorption of H2 pairs computed from the first principles, with application to cool and dense stellar atmospheres. J. Quant. Spectrosc. Radiat. Transf. 68, 235–255 (2001).

    ADS  Article  Google Scholar 

  64. 64.

    Kowalski, P. M. Infrared absorption of dense helium and its importance in the atmospheres of cool white dwarfs. Astron. Astrophys. 566, L8 (2014).

    ADS  Article  Google Scholar 

  65. 65.

    Rohrmann, R. D., Althaus, L. G. & Kepler, S. O. Lyman α wing absorption in cool white dwarf stars. Mon. Not. R. Astron. Soc. 411, 781–791 (2011).

    ADS  Article  Google Scholar 

  66. 66.

    Tremblay, P.-E., Ludwig, H.-G., Steffen, M. & Freytag, B. Spectroscopic analysis of DA white dwarfs with 3D model atmospheres. Astron. Astrophys. 559, A104 (2013).

    Article  Google Scholar 

  67. 67.

    Marigo, P. et al. Carbon star formation as seen through the non-monotonic initial-final mass relation. Nat. Astron. 4, 1102–1110 (2020).

    ADS  Article  Google Scholar 

  68. 68.

    Hurley, J. R., Pols, O. R. & Tout, C. A. Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity. Mon. Not. R. Astron. Soc. 315, 543–569 (2000).

    ADS  Article  Google Scholar 

  69. 69.

    Oppenheimer, B. R., Hambly, N. C., Digby, A. P., Hodgkin, S. T. & Saumon, D. Direct detection of galactic halo dark matter. Science 292, 698–702 (2001).

    ADS  Article  Google Scholar 

  70. 70.

    Seabroke, G. M. & Gilmore, G. Revisiting the relations: galactic thin disc age-velocity dispersion relation. Mon. Not. R. Astron. Soc. 380, 1348–1368 (2007).

    ADS  Article  Google Scholar 

  71. 71.

    Kilic, M. et al. The age of the galactic stellar halo from Gaia white dwarfs. Mon. Not. R. Astron. Soc. 482, 965–979 (2019).

    ADS  Article  Google Scholar 

  72. 72.

    Fantin, N. J. et al. The Canada-France imaging survey: reconstructing the Milky Way star formation history from its white dwarf population. Astrophys. J. 887, 148 (2019).

    ADS  Article  Google Scholar 

  73. 73.

    Feltzing, S., Holmberg, J. & Hurley, J. R. The solar neighbourhood age-metallicity relation—does it exist? Astron. Astrophys. 377, 911–924 (2001).

    ADS  Article  Google Scholar 

  74. 74.

    Casagrande, L. et al. New constraints on the chemical evolution of the solar neighbourhood and galactic disc(s). Improved astrophysical parameters for the Geneva-Copenhagen Survey. Astron. Astrophys. 530, A138 (2011).

    Article  Google Scholar 

Download references


M.A.H. and P.-E.T. acknowledge useful discussions with H.-G. Ludwig and M. Steffen regarding neutral broadening of lithium lines. We also acknowledge J. McCleery for maintaining a database of 40 pc white dwarf spectra. M.A.H. and D.K. acknowledge atomic data from T. Leininger used for the Ca i unified profile. This research received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme number 677706 (WD3D). B.T.G. was supported by the UK STFC under grant number ST/T000406/1 and a Leverhulme Research Fellowship. Funding for the Sloan Digital Sky Survey IV ( was provided by the Alfred P. Sloan Foundation, the US Department of Energy Office of Science and the participating institutions. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 0102.C-0351. This article is based on observations (programme ITP08) made in the Observatorios de Canarias del IAC with the WHT operated on the island of La Palma by the Isaac Newton Group of Telescopes in the Observatorio del Roque de los Muchachos and with the Gran Telescopio Canarias (GTC), installed at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma.

Author information




M.A.H. performed data reduction, analysis and interpretation and wrote the majority of the text. P.-E.T. and B.T.G. contributed to the data interpretation and writing of the article. D.K. developed the model atmosphere code used for the analysis. N.P.G.-F. contributed to the data reduction and analysis of photometric data.

Corresponding author

Correspondence to Mark A. Hollands.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Astrometry and photometry for the four lithium-rich white dwarfs.

Pan-STARRS, SDSS and SkyMapper photometry are given in the AB-system, with the remainder in the Vega system. Positions are given in the J2015.5 epoch.

Extended Data Fig. 2 Atmospheric parameters for the four white dwarfs with photospheric lithium.

The abundances are in base 10 in terms of number ratio.

Extended Data Fig. 3 Best fitting models compared with the spectra and photometry of the four lithium-bearing white dwarfs.

In the right panel for WD J2317+1830, the disk model and white dwarf plus disk model are indicated by dotted and dashed curves, respectively. The spectrum of SDSS J1330+6435 has been smoothed with a Gaussian with a full width half maximum of 5 Å. Error bars correspond to 1σ uncertainties.

Extended Data Fig. 4 White dwarf envelope parameters for our sample.

The first row indicates the fractional convection zone mass. In subsequent rows, pairs correspond to the sinking timescale at the base of the convection zone in years, and (where abundances were determined) the elemental mass in the convection zone in g, i.e. (τZ/yr, mZ/g). Diffusion timescales are given for all elements commonly considered in white dwarf planetary abundance studies. The final row, ‘crust’, provides estimates for the total material within the white dwarf convection zones, assuming a continental crust composition, scaled from the Na masses.

Extended Data Fig. 5 SDSS spectra of three additional cool DZs with strong metal absorption features.

Lithium lines are not detected for any of these stars. Spectra have been smoothed by a Gaussian with a full width half maximum of 3 Å for clarity.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and Tables 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hollands, M.A., Tremblay, PE., Gänsicke, B.T. et al. Alkali metals in white dwarf atmospheres as tracers of ancient planetary crusts. Nat Astron (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing