Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Availability of subsurface water-ice resources in the northern mid-latitudes of Mars

Abstract

Multiple nations and private entities are pushing to make landing humans on Mars a reality. The majority of proposed mission architectures envision ‘living off the land’ by leveraging Martian water-ice deposits for fuel production and other purposes. Fortunately for mission designers, water ice exists on Mars in plentiful volumes. The challenge is isolating accessible ice deposits within regions that optimize other preferred landing-site conditions. Here we present the first results of the Mars Subsurface Water Ice Mapping (SWIM) project, which has the aim of searching for buried ice resources across the mid-latitudes. Through the integration of orbital datasets in concert with new data-processing techniques, the SWIM project assesses the likelihood of ice by quantifying the consistency of multiple, independent data sources with the presence of ice. Concentrating our efforts across the majority of the northern hemisphere, our composite ice-consistency maps indicate that the broad plains of Arcadia and the extensive glacial networks across Deuteronilus Mensae match the greatest number of remote-sensing criteria for accessible ice-rich, subsurface material situated equatorwards of the contemporary ice-stability zone.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Mars SWIM project study region and ice-consistency results.
Fig. 2: Correlation between ice-exposing, fresh impacts and positive Ci values.
Fig. 3: Radar analysis (radar surface/radar subsurface dielectric) of glaciers and mantle deposits within Deuteronilus Mensae.
Fig. 4: Spatial extent and thickness of deposits identified within the high Ci (ice rich) Arcadia region.

Data availability

The ice-consistency and thickness maps (as both GIS-compatible GeoTIFFs and browse images) along with the constituent data for each ice-detection technique are available on the SWIM project website at https://swim.psi.edu. All of the instrument datasets used to derive our ice-detection techniques are available on the NASA Planetary Data System at https://pds.nasa.gov/. The Dickson et al.24 Context Camera mosaic used to tabulate the geomorphology ice-consistency values can be found on the Caltech Murray Lab website at http://murray-lab.caltech.edu/CTX/index.html. Updates of new SWIM products can be found at https://twitter.com/RedPlanetSWIM.

References

  1. 1.

    Zubrin, R., Daker, D. & Gwynne, O. Mars direct: a simple, robust, and cost effective architecture for the Space Exploration Initiative. In Proc. 29th Aerospace Sciences Meeting AIAA-91–329 (AIAA, 1991).

  2. 2.

    Ash, R. L., Dowler, W. L. & Varsi, G. Feasibility of rocket propellant production on Mars. Acta Astronaut. 5, 705–724 (1978).

    ADS  Article  Google Scholar 

  3. 3.

    Baker, D. M. H. & Head, J. W. Extensive Middle Amazonian mantling of debris aprons and plains in Deuteronilus Mensae, Mars: implications for the record of mid-latitude glaciation. Icarus 260, 269–288 (2015).

    ADS  Article  Google Scholar 

  4. 4.

    Pathare, A. V., Feldman, W. C., Prettyman, T. H. & Maurice, S. Driven by excess? Climatic implications of new global mapping of near-surface water-equivalent hydrogen on Mars. Icarus 301, 97–116 (2018).

    ADS  Article  Google Scholar 

  5. 5.

    Piqueux, S. et al. Widespread shallow water ice on Mars at high latitudes and midlatitudes. Geophys. Res. Lett. 46, 14290–14298 (2019).

    ADS  Article  Google Scholar 

  6. 6.

    Leighton, R. B. & Murray, B. C. Behavior of carbon dioxide and other volatiles on Mars. Science 153, 136–144 (1966).

    ADS  Article  Google Scholar 

  7. 7.

    Paige, D. A. The thermal stability of near-surface ground ice on Mars. Nature 356, 43–45 (1992).

    ADS  Article  Google Scholar 

  8. 8.

    Mellon, M. T., Feldman, W. C. & Prettyman, T. H. The presence and stability of ground ice in the southern hemisphere of Mars. Icarus 169, 324–340 (2004).

    ADS  Article  Google Scholar 

  9. 9.

    Feldman, W. C. et al. Mars Odyssey neutron data: 2. Search for buried excess water ice deposits at nonpolar latitudes on Mars. J. Geophys. Res. 116, E11009 (2011).

    ADS  Article  Google Scholar 

  10. 10.

    Head, J. W., Mustard, J. F., Kreslavsky, M. A., Milliken, R. E. & Marchant, D. R. Recent ice ages on Mars. Nature 426, 797–802 (2003).

    ADS  Article  Google Scholar 

  11. 11.

    Squyres, S. W. The distribution of lobate debris aprons and similar flows on Mars. J. Geophys. Res. 84, 8087–8096 (1979).

    ADS  Article  Google Scholar 

  12. 12.

    Head, J. W. et al. Extensive valley glacier deposits in the northern mid-latitudes of Mars: evidence for Late Amazonian obliquity-driven climate change. Earth Planet. Sci. Lett. 241, 663–671 (2006).

    ADS  Article  Google Scholar 

  13. 13.

    Holt, J. W. et al. Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science 322, 1235–1238 (2008).

    ADS  Article  Google Scholar 

  14. 14.

    Plaut, J. J. et al. Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars. Geophys. Res. Lett. 36, L02203 (2009).

    ADS  Article  Google Scholar 

  15. 15.

    Dundas, C. M. et al. Exposed subsurface ice sheets in the Martian mid-latitudes. Science 359, 199–201 (2018).

    ADS  Article  Google Scholar 

  16. 16.

    Byrne, S. et al. Distribution of mid-latitude ground ice on Mars from new impact craters. Science 325, 1674–1676 (2009).

    ADS  Article  Google Scholar 

  17. 17.

    Dundas, C. M. et al. HiRISE observations of new impact craters exposing Martian ground ice. J. Geophys. Res. 119, 109–127 (2014).

    Article  Google Scholar 

  18. 18.

    Milliken, R. E., Mustard, J. F. & Goldsby, D. L. Viscous flow features on the surface of Mars: observations from high-resolution Mars Orbiter Camera (MOC) images. J. Geophys. Res. Planets https://doi.org/10.1029/2002je002005 (2003).

  19. 19.

    Putzig, N. E. & Mellon, M. T. Apparent thermal inertia and the surface heterogeneity of Mars. Icarus 191, 68–94 (2007).

    ADS  Article  Google Scholar 

  20. 20.

    Bramson, A. M. et al. Widespread excess ice in Arcadia Planitia, Mars. Geophys. Res. Lett. 42, 6566–6574 (2015).

    ADS  Article  Google Scholar 

  21. 21.

    Feldman, W. C. et al. Global distribution of near-surface hydrogen on Mars. J. Geophys. Res. 109, E09006 (2004).

    ADS  Google Scholar 

  22. 22.

    Mellon, M. T., Fergason, R. L. & Putzig, N. E. in The Martian Surface: Composition, Mineralogy, and Physical Properties (ed. Bell, J. F. III) 399–427 (Cambridge Univ. Press, 2008).

  23. 23.

    Putzig, N. E. et al. Thermal behavior and ice-table depth within the north polar erg of Mars. Icarus 230, 64–76 (2014).

    ADS  Article  Google Scholar 

  24. 24.

    Dickson, J. L., Kerber, L. A., Fassett, C. I. & Ehlmann, B. L. A global, blended CTX mosaic of Mars with vectorized seam mapping: a new mosaicking pipeline using principles of non-destructive image editing. In Proc. 49th Lunar and Planetary Science Conference abstr. 2480 (LPI, 2018).

  25. 25.

    Ramsdale, J. D. et al. Grid mapping the northern plains of Mars: geomorphological, radar, and water-equivalent hydrogen results from Arcadia Planitia. J. Geophys. Res. 124, 504–527 (2019).

    Article  Google Scholar 

  26. 26.

    Grima, C., Kofman, W., Hérique, A., Orosei, R. & Seu, R. Quantitative analysis of Mars surface radar reflectivity at 20 MHz. Icarus 220, 84–99 (2012).

    ADS  Article  Google Scholar 

  27. 27.

    Mouginot, J. et al. The 3–5 MHz global reflectivity map of Mars by MARSIS/Mars Express: implications for the current inventory of subsurface H2O. Icarus 210, 612–625 (2010).

    ADS  Article  Google Scholar 

  28. 28.

    Castaldo, L., Mège, D., Gurgurewicz, J., Orosei, R. & Alberti, G. Global permittivity mapping of the Martian surface from SHARAD. Earth Planet. Sci. Lett. 462, 55–65 (2017).

    ADS  Article  Google Scholar 

  29. 29.

    Campbell, B. A. et al. Roughness and near-surface density of Mars from SHARAD radar echoes. J. Geophys. Res. 118, 436–450 (2013).

    Article  Google Scholar 

  30. 30.

    MacGregor, J. A. et al. A synthesis of the basal thermal state of the Greenland Ice Sheet. J. Geophys. Res. Earth Surf. 121, 1328–1350 (2016).

    ADS  Article  Google Scholar 

  31. 31.

    Petersen, E. I., Holt, J. W. & Levy, J. S. High ice purity of Martian lobate debris aprons at the regional scale: evidence from an orbital radar sounding survey in Deuteronilus and Protonilus Mensae. Geophys. Res. Lett. 45, 11595–11604 (2018).

    ADS  Article  Google Scholar 

  32. 32.

    Baker, D. M. H. & Carter, L. M. Radar reflectors associated with an ice-rich mantle unit in Deuteronilus Mensae, Mars. In Proc. 48th Lunar and Planetary Science Conference abstr. 1575 (LPI, 2017).

  33. 33.

    Fuller, E. R. & Head, J. W. Olympus Mons, Mars: detection of extensive preaureole volcanism and implications for initial mantle plume behavior. Geology 31, 175–178 (2003).

    ADS  Article  Google Scholar 

  34. 34.

    Carter, L. M. et al. Dielectric properties of lava flows west of Ascraeus Mons, Mars. Geophys. Res. Lett. 36, L23204 (2009).

    ADS  Article  Google Scholar 

  35. 35.

    Simon, M. N., Carter, L. M., Campbell, B. A., Phillips, R. J. & Mattei, S. Studies of lava flows in the Tharsis region of Mars using SHARAD. J. Geophys. Res. 119, 2291–2299 (2014).

    Article  Google Scholar 

  36. 36.

    Campbell, B. A. & Morgan, G. A. Fine-scale layering of Mars polar deposits and signatures of ice content in nonpolar material from multiband SHARAD data processing. Geophys. Res. Lett. 45, 1759–1766 (2018).

    ADS  Article  Google Scholar 

  37. 37.

    Diniega, S. & Putzig, N. E. (chairs) MEPAG ICE-SAG Final Report from the Ice and Climate Evolution Science Analysis group (ICE-SAG) (MEPAG, 2019); http://mepag.jpl.nasa.gov/reports.cfm

  38. 38.

    Arvidson, R. et al. Mars Exploration Program 2007 Phoenix landing site selection and characteristics. J. Geophys. Res. 113, E00A03 (2008).

    Google Scholar 

  39. 39.

    Golombek, M. et al. Selection of the Mars Science Laboratory landing site. Space Sci. Rev. 170, 641–737 (2012)

  40. 40.

    Novak, K. S., Liu, Y., Lee, C.-J. & Hendricks, S. Mars Science Laboratory Rover Actuator Thermal Design (AIAA, 2010); https://go.nature.com/3sHuGZz

  41. 41.

    Badescu, V. in Mars (ed. Badescu, V.) Ch. 2 (Springer, 2009).

  42. 42.

    Appelbaum, J. & Flood, D. J. Solar radiation on Mars. Sol. Energy 45, 353–363 (1990).

    ADS  Article  Google Scholar 

  43. 43.

    Golombek, M. et al. Selection of the InSight landing site. Space Sci. Rev. https://doi.org/10.1007/s11214-016-0321-9 (2016).

Download references

Acknowledgements

The Subsurface Water Ice Mapping (SWIM) in the northern hemisphere of Mars project outlined in this paper was supported by grants provided by NASA through the Jet Propulsion Laboratory (JPL subcontract number 1611855; JPL RSA: 1589197 and 1595721). Elements of the ice-detection techniques were pioneered through support provided to team members by the NASA Mars Reconnaissance Orbiter Project. The PSI also acknowledges SeisWare International Inc. for an academic license of their software that was used for the SHARAD subsurface mapping. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Affiliations

Authors

Contributions

G.A.M. and N.E.P. led the project and wrote the majority of the manuscript. N.E.P., H.G.S., R.H.H., Z.M.B. and M.R.P. conducted the thermal analysis. A.M.B., E.I.P., Z.M.B., M.M. and M.R.P. undertook the radar subsurface dielectric mapping and analysis. D.M.H.B. led the geomorphic mapping. G.A.M. and B.A.C. derived the radar surface analysis products. M.R.P. set up the computational and website infrastructure and archiving. M.R.P., Z.M.B. and G.A.M. were responsible for producing the integrated Ci products. A.P., C.M.D., I.B.S. and B.A.C. contributed to the broad analysis and assisted the other team members in the preparation of the manuscript.

Corresponding author

Correspondence to G. A. Morgan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Hideaki Miyamoto, Reid Parsons and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–4, and Tables 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morgan, G.A., Putzig, N.E., Perry, M.R. et al. Availability of subsurface water-ice resources in the northern mid-latitudes of Mars. Nat Astron 5, 230–236 (2021). https://doi.org/10.1038/s41550-020-01290-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing