A titanic interstellar medium ejection from a massive starburst galaxy at redshift 1.4


Feedback-driven winds from star formation or active galactic nuclei might be a relevant channel for the abrupt quenching of star formation in massive galaxies. However, both observations and simulations support the idea that these processes are non-conflictingly co-evolving and self-regulating. Furthermore, evidence of disruptive events that are capable of fast quenching is rare, and constraints on their statistical prevalence are lacking. Here we present a massive starburst galaxy at redshift z = 1.4, which is ejecting 46 ± 13% of its molecular gas mass at a startling rate of 10,000 M yr−1. A broad component that is red-shifted from the galaxy emission is detected in four (low and high J) CO and [C i] transitions and in the ionized phase, which ensures a robust estimate of the expelled gas mass. The implied statistics suggest that similar events are potentially a major star-formation quenching channel. However, our observations provide compelling evidence that this is not a feedback-driven wind, but rather material from a merger that has been probably tidally ejected. This finding challenges some literature studies in which the role of feedback-driven winds might be overstated.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Multiwavelength spectra of ID2299.
Fig. 2: HST imaging and narrow and broad component ALMA maps of ID2299.
Fig. 3: Comparison between disruptive event rates and density of newly quenched galaxies.
Fig. 4: Comparison between ID2299 and molecular winds from the literature.
Fig. 5: Comparison between ID2299 and simulations of AGN-driven winds.
Fig. 6: Molecular gas conditions in the narrow and broad components of ID2299.

Data availability

The ALMA data analysed in this study are publicly available from the ALMA archive (http://almascience.nrao.edu/aq/, Program IDs: 2015.1.00260.S, 2016.1.00171.S and 2019.1.01702.S). The DEIMOS spectrum of the source is also publicly available and can be retrieved through the COSMOS archive (http://cosmos.astro.caltech.edu/).

Code availability

The ALMA data are processed using a series of GILDAS-based scripts available at https://github.com/1054/Crab.Toolkit.PdBI. The GILDAS software is publicly available at http://www.iram.fr/IRAMFR/GILDAS. The CO and [C i] emission of the source has been modelled with the MICHI2 software, which is publicly available at https://ascl.net/code/v/2533.


  1. 1.

    Man, A. & Belli, S. Star formation quenching in massive galaxies. Nat. Astron. 2, 695–697 (2018).

    ADS  Article  Google Scholar 

  2. 2.

    Harrison, C. M. Impact of supermassive black hole growth on star formation. Nat. Astron. 1, 0165 (2017).

    ADS  Article  Google Scholar 

  3. 3.

    Cattaneo, A. et al. The role of black holes in galaxy formation and evolution. Nature 460, 213–219 (2009).

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 446, 521–554 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    Weinberger, R. et al. Simulating galaxy formation with black hole driven thermal and kinetic feedback. Mon. Not. R. Astron. Soc. 465, 3291–3308 (2017).

    ADS  Article  Google Scholar 

  6. 6.

    Förster Schreiber, N. M. et al. The KMOS3D survey: demographics and properties of galactic outflows at z = 0.6–2.7. Astrophys. J. 875, 21 (2019).

    ADS  Article  Google Scholar 

  7. 7.

    Mullaney, J. R. et al. The hidden ‘AGN main sequence’: evidence for a universal black hole accretion to star formation rate ratio since z ~ 2 producing an MBH–M* relation. Astrophys. J. Lett. 753, 5 (2012).

    Article  Google Scholar 

  8. 8.

    Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Ann. Rev. Astron. Astrophys. 51, 511–653 (2013).

    ADS  Article  Google Scholar 

  9. 9.

    Madau, P. & Dickinson, M. Cosmic star-formation history. Ann. Rev. Astron. Astrophys. 52, 415–486 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Schreiber, C. et al. The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day. Astron. Astrophys. 575, A74 (2015).

    Article  Google Scholar 

  11. 11.

    Gabor, J. M. & Bournaud, F. Active galactic nuclei–driven outflows without immediate quenching in simulations of high-redshift disc galaxies. Mon. Not. R. Astron. Soc. 441, 1615–1627 (2014).

    ADS  Article  Google Scholar 

  12. 12.

    Geach, J. E. et al. Stellar feedback as the origin of an extended molecular outflow in a starburst galaxy. Nature 516, 68–70 (2014).

    ADS  Article  Google Scholar 

  13. 13.

    Civano, F. et al. The Chandra COSMOS Legacy survey: overview and point source catalog. Astrophys. J. 819, 62 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    Lehmer, B. D. et al. The evolution of normal galaxy X-ray emission through cosmic history: constraints from the 6 Ms Chandra Deep Field-South. Astrophys. J. 825, 24 (2016).

    Article  Google Scholar 

  15. 15.

    Valentino, F. et al. The properties of the interstellar medium of galaxies across time as traced by the neutral atomic carbon [C i]. Astrophys. J. 890, 24 (2020).

    ADS  Article  Google Scholar 

  16. 16.

    Hasinger, G. et al. The DEIMOS 10K spectroscopic survey catalog of the COSMOS field. Astrophys. J. 858, 77 (2018).

    ADS  Article  Google Scholar 

  17. 17.

    Fiore, F. et al. AGN wind scaling relations and the co-evolution of black holes and galaxies. Astron. Astrophys. 601, A143 (2017).

    Article  Google Scholar 

  18. 18.

    Daddi, E. et al. Very high gas fractions and extended gas reservoirs in z = 1.5 disk galaxies. Astrophys. J. 713, 686–707 (2010).

    ADS  Article  Google Scholar 

  19. 19.

    Emonts, B. H. C. et al. The dragonfly galaxy. II. ALMA unveils a triple merger and gas exchange in a hyper-luminous radio galaxy at z = 2. Astron. Astrophys. 584, A99 (2015).

    Article  Google Scholar 

  20. 20.

    Springel, V. et al. The Aquarius project: the subhaloes of galactic haloes. Mon. Not. R. Astron. Soc. 391, 1685–1711 (2008).

    ADS  Article  Google Scholar 

  21. 21.

    Falgarone, E. et al. Large turbulent reservoirs of cold molecular gas around high-redshift starburst galaxies. Nature 548, 430–433 (2017).

    ADS  Article  Google Scholar 

  22. 22.

    Mancini, C. et al. Rejuvenated galaxies with very old bulges at the origin of the bending of the main sequence and of the ‘green valley’. Mon. Not. R. Astron. Soc. 489, 1265–1290 (2019).

    ADS  Article  Google Scholar 

  23. 23.

    Carnall, A. C. et al. The VANDELS survey: the star-formation histories of massive quiescent galaxies at 1.0 < z < 1.3. Mon. Not. R. Astron. Soc. 490, 417–439 (2019).

    ADS  Article  Google Scholar 

  24. 24.

    Di Matteo, T., Springel, V. & Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604–607 (2005).

    ADS  Article  Google Scholar 

  25. 25.

    Puglisi, A. et al. The main sequence at z ~ 1.3 contains a sizable fraction of galaxies with compact star formation sizes: a new population of early post-starbursts? Astrophys. J. Lett. 877, L23 (2019).

    ADS  Article  Google Scholar 

  26. 26.

    Perna, M. et al. Galaxy-wide outflows in z ~ 1.5 luminous obscured quasars revealed through near-IR slit-resolved spectroscopy. Astron. Astrophys. 574, A82 (2015).

    Article  Google Scholar 

  27. 27.

    Feruglio, C. et al. The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow. Astron. Astrophys. 583, A99 (2015).

    Article  Google Scholar 

  28. 28.

    Herrera-Camus, R. et al. Molecular and ionized gas phases of an AGN-driven outflow in a typical massive galaxy at z ≈ 2. Astrophys. J. 871, 37 (2019).

    ADS  Article  Google Scholar 

  29. 29.

    Fluetsch, A. et al. Cold molecular outflows in the local Universe and their feedback effect on galaxies. Mon. Not. R. Astron. Soc. 483, 4586–4614 (2019).

    ADS  Google Scholar 

  30. 30.

    Negrello, M. et al. Understanding galaxy formation and evolution through an all-sky submillimetre spectroscopic survey. Pub. Astron. Soc. Aust. 37, e025 (2020).

    ADS  Article  Google Scholar 

  31. 31.

    Schawinski, K., Koss, M., Berney, S. & Sartori, L. F. Active galactic nuclei flicker: an observational estimate of the duration of black hole growth phases of 105 yr. Mon. Not. R. Astron. Soc. 451, 2517–2523 (2015).

    ADS  Article  Google Scholar 

  32. 32.

    Wolf, C. et al. Discovery of the most ultra-luminous QSO using GAIA, SkyMapper, and WISE. Publ. Astron. Soc. Aust. 35, e024 (2018).

    ADS  Article  Google Scholar 

  33. 33.

    Bournaud, F. et al. Hydrodynamics of high-redshift galaxy collisions: from gas-rich disks to dispersion-dominated mergers and compact spheroids. Astrophys. J. 730, 4 (2011).

    ADS  Article  Google Scholar 

  34. 34.

    Swinbank, A. M. et al. Intense star formation within resolved compact regions in a galaxy at z = 2.3. Nature 464, 733–736 (2010).

    ADS  Article  Google Scholar 

  35. 35.

    Danielson, A. L. R. et al. The properties of the interstellar medium within a star-forming galaxy at z = 2.3. Mon. Not. R. Astron. Soc. 410, 1687–1702 (2011).

    ADS  Google Scholar 

  36. 36.

    Barnes, J. E. & Hernquist, L. Transformations of galaxies. II. Gas dynamics in merging disk galaxies. Astrophys. J. 471, 115 (1996).

    ADS  Article  Google Scholar 

  37. 37.

    Hibbard, J. E. & van Gorkom, J. H. H i, H ii, and R-band observations of a galactic merger sequence. Astrophys. J. 111, 655 (1996).

    Google Scholar 

  38. 38.

    Bournaud, F., Duc, P. A., Amram, P., Combes, F. & Gach, J. L. Kinematics of tidal tails in interacting galaxies: tidal dwarf galaxies and projection effects. Astron. Astrophys. 425, 813–823 (2004).

    ADS  Article  Google Scholar 

  39. 39.

    Silverman, J. D. et al. Concurrent starbursts in molecular gas disks within a pair of colliding galaxies at z = 1.52. Astrophys. J. 868, 75 (2018).

    ADS  Article  Google Scholar 

  40. 40.

    Fensch, J. et al. High-redshift major mergers weakly enhance star formation. Mon. Not. R. Astron. Soc. 465, 1934–1949 (2017).

    ADS  Article  Google Scholar 

  41. 41.

    Bournaud, F. Star formation and structure formation in galaxy interactions and mergers. In Galaxy Wars: Stellar Populations and Star Formation in Interacting Galaxies, ASP Conference Series Vol. 23 (eds Smith, B. et al.) 177–184 (Astronomical Society of the Pacific, 2010).

  42. 42.

    Daddi, E. et al. CO excitation of normal star-forming galaxies out to z = 1.5 as regulated by the properties of their interstellar medium. Astron. Astrophys. 577, A46 (2015).

    Article  Google Scholar 

  43. 43.

    Maiolino, R. et al. Star formation inside a galactic outflow. Nature 544, 202–206 (2017).

    ADS  Article  Google Scholar 

  44. 44.

    Leslie, S. K., Rich, J. A., Kewley, L. J. & Dopita, M. A. The energy source and dynamics of infrared luminous galaxy ESO 148-IG002. Mon. Not. R. Astron. Soc. 444, 1842–1853 (2014).

    ADS  Article  Google Scholar 

  45. 45.

    Monreal-Ibero, A. et al. VLT-VIMOS integral field spectroscopy of luminous and ultraluminous infrared galaxies. II. Evidence for shock ionization caused by tidal forces in the extra-nuclear regions of interacting and merging LIRGs. Astron. Astrophys. 517, A28 (2010).

    Article  Google Scholar 

  46. 46.

    Cicone, C. et al. ALMA [C i]3P13P0 observations of NGC 6240: a puzzling molecular outflow, and the role of outflows in the global αCO factor of (U)LIRGs. Astrophys. J. 863, 143 (2018).

    ADS  Article  Google Scholar 

  47. 47.

    Sakamoto, K., Aalto, S., Combes, F., Evans, A. & Peck, A. An infrared-luminous merger with two bipolar molecular outflows: ALMA and SMA observations of NGC 3256. Astrophys. J. 797, 90 (2014).

    ADS  Article  Google Scholar 

  48. 48.

    Bournaud, F., Elmegreen, B. G. & Elmegreen, D. M. Rapid formation of exponential disks and bulges at high redshift from the dynamical evolution of clump-cluster and chain galaxies. Astrophys. J. 670, 237–248 (2007).

    ADS  Article  Google Scholar 

  49. 49.

    English, J., Norris, R. P., Freeman, K. C. & Booth, R. S. NGC 3256: kinematic anatomy of a merger. Astron. J. 125, 1134–1149 (2003).

    ADS  Article  Google Scholar 

  50. 50.

    Feruglio, C. et al. NGC 6240: extended CO structures and their association with shocked gas. Astron. Astrophys. 549, A51 (2013).

    Article  Google Scholar 

  51. 51.

    Swinbank, A. M. et al. The energetics of starburst-driven outflows at z ~ 1 from KMOS. Mon. Not. R. Astron. Soc. 487, 381–393 (2019).

    ADS  Article  Google Scholar 

  52. 52.

    Ginolfi, M. et al. The ALPINE-ALMA [C ii] survey: star-formation-driven outflows and circumgalactic enrichment in the early Universe. Astron. Astrophys. 633, A90 (2020).

    Article  Google Scholar 

  53. 53.

    Cibinel, A. et al. Early- and late-stage mergers among main sequence and starburst galaxies at 0.2 ≤ z ≤ 2. Mon. Not. R. Astron. Soc. 485, 5631–5651 (2019).

    ADS  Article  Google Scholar 

  54. 54.

    Straatman, C. M. S. et al. A substantial population of massive quiescent galaxies at z ~ 4 from ZFOURGE. Astrophys. J. Lett. 783, L14 (2014).

    ADS  Article  Google Scholar 

  55. 55.

    Vayner, A. et al. Galactic-scale feedback observed in the 3C 298 quasar host galaxy. Astrophys. J. 851, 126 (2017).

    ADS  Article  Google Scholar 

  56. 56.

    Brusa, M. et al. Molecular outflow and feedback in the obscured quasar XID2028 revealed by ALMA. Astron. Astrophys. 612, A29 (2018).

    Article  Google Scholar 

  57. 57.

    Valentino, F. et al. CO emission in distant galaxies on and above the main sequence. Astron. Astrophys. 641, A155 (2020).

    Article  Google Scholar 

  58. 58.

    Jin, S. et al. ‘Super-deblended’ dust emission in galaxies. II. Far-IR to (sub)millimeter photometry and high-redshift galaxy candidates in the full COSMOS field. Astrophys. J. 864, 56 (2018).

    ADS  Article  Google Scholar 

  59. 59.

    Kennicutt, J. & Robert, C. Star formation in galaxies along the Hubble sequence. Ann. Rev. Astron. Astrophys. 36, 189–232 (1998).

    ADS  Article  Google Scholar 

  60. 60.

    Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    ADS  Article  Google Scholar 

  61. 61.

    Laigle, C. et al. The COSMOS2015 catalog: exploring the 1 ≤ z ≤ 6 universe with half a million galaxies. Astrophys. J. Suppl. Ser. 224, 24 (2016).

    ADS  Article  Google Scholar 

  62. 62.

    Noll, S. et al. Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample. Astron. Astrophys. 507, 1793–1813 (2009).

    ADS  Article  Google Scholar 

  63. 63.

    Circosta, C. et al. SUPER. I. Toward an unbiased study of ionized outflows in z ~ 2 active galactic nuclei: survey overview and sample characterization. Astron. Astrophys. 620, A82 (2018).

    Article  Google Scholar 

  64. 64.

    Silverman, J. D. et al. A higher efficiency of converting gas to stars pushes galaxies at z ~ 1.6 well above the star-forming main sequence. Astrophys. J. Lett. 812, L23 (2015).

    ADS  Article  Google Scholar 

  65. 65.

    Puglisi, A. et al. The bright and dark sides of high-redshift starburst galaxies from Herschel and Subaru observations. Astrophys. J. Lett. 838, L18 (2017).

    ADS  Article  Google Scholar 

  66. 66.

    Calabrò, A. et al. Near-infrared emission lines in starburst galaxies at 0.5 < z < 0.9: discovery of a merger sequence of extreme obscurations. Astrophys. J. Lett. 862, L22 (2018).

    ADS  Article  Google Scholar 

  67. 67.

    Calabrò, A. et al. Deciphering an evolutionary sequence of merger stages in infrared-luminous starburst galaxies at z ~ 0.7. Astron. Astrophys. 623, A64 (2019).

    Article  Google Scholar 

  68. 68.

    Meurer, G. R., Heckman, T. M. & Calzetti, D. Dust absorption and the ultraviolet luminosity density at z ~ 3 as calibrated by local starburst galaxies. Astrophys. J. 521, 64–80 (1999).

    ADS  Article  Google Scholar 

  69. 69.

    Kartaltepe, J. S. et al. A multiwavelength study of a sample of 70 μm selected galaxies in the COSMOS Field. II. The role of mergers in galaxy evolution. Astrophys. J. 721, 98–123 (2010).

    ADS  Article  Google Scholar 

  70. 70.

    Pawlik, M. M. et al. Shape asymmetry: a morphological indicator for automatic detection of galaxies in the post-coalescence merger stages. Mon. Not. R. Astron. Soc. 456, 3032–3052 (2016).

    ADS  Article  Google Scholar 

  71. 71.

    Lotz, J. M., Jonsson, P., Cox, T. J. & Primack, J. R. Galaxy merger morphologies and time-scales from simulations of equal-mass gas-rich disc mergers. Mon. Not. R. Astron. Soc. 391, 1137–1162 (2008).

    ADS  Article  Google Scholar 

  72. 72.

    Markwardt, C. B. Non-linear least-squares fitting in IDL with MPFIT. In Astronomical Data Analysis Software and Systems XVIII, ASP Conference Series Vol. 411 (eds Bohlender, D. A. et al.) 251–254 (Astronomical Society of the Pacific, 2009).

  73. 73.

    Jin, S. et al. Discovery of four apparently cold dusty galaxies at z = 3.62–5.85 in the COSMOS field: direct evidence of cosmic microwave background impact on high-redshift galaxy observables. Astrophys. J. 887, 144 (2019).

    ADS  Article  Google Scholar 

  74. 74.

    Silverman, J. D. et al. The molecular gas content and fuel efficiency of starbursts at z ~ 1.6 with ALMA. Astrophys. J. 867, 92 (2018).

    ADS  Article  Google Scholar 

  75. 75.

    Carniani, S. et al. Ionised outflows in z ~ 2.4 quasar host galaxies. Astron. Astrophys. 580, A102 (2015).

    Article  Google Scholar 

  76. 76.

    Cicone, C. et al. Massive molecular outflows and evidence for AGN feedback from CO observations. Astron. Astrophys. 562, A21 (2014).

    Article  Google Scholar 

  77. 77.

    Hibbard, J. E. & Yun, M. S. in Cold Gas at High Redshift (eds Bremer, M. N. & Malcolm, N.) 47–53 (Kluwer Academic Publishers, 1996).

  78. 78.

    Roos, O., Juneau, S., Bournaud, F. & Gabor, J. M. Thermal and radiative active galactic nucleus feedback have a limited impact on star formation in high-redshift galaxies. Astrophys. J. 800, 19 (2015).

    ADS  Article  Google Scholar 

  79. 79.

    Biernacki, P. & Teyssier, R. The combined effect of AGN and supernovae feedback in launching massive molecular outflows in high-redshift galaxies. Mon. Not. R. Astron. Soc. 475, 5688–5703 (2018).

    ADS  Article  Google Scholar 

  80. 80.

    Costa, T., Sijacki, D. & Haehnelt, M. G. Feedback from active galactic nuclei: energy- versus momentum-driving. Mon. Not. R. Astron. Soc. 444, 2355–2376 (2014).

    ADS  Article  Google Scholar 

  81. 81.

    Costa, T., Sijacki, D. & Haehnelt, M. G. Fast cold gas in hot AGN outflows. Mon. Not. R. Astron. Soc. 448, L30–L34 (2015).

    ADS  Article  Google Scholar 

  82. 82.

    Costa, T., Rosdahl, J., Sijacki, D. & Haehnelt, M. G. Quenching star formation with quasar outflows launched by trapped IR radiation. Mon. Not. R. Astron. Soc. 479, 2079–2111 (2018).

    ADS  Article  Google Scholar 

  83. 83.

    Richings, A. J. & Faucher-Giguère, C.-A. The origin of fast molecular outflows in quasars: molecule formation in AGN-driven galactic winds. Mon. Not. R. Astron. Soc. 474, 3673–3699 (2018).

    ADS  Article  Google Scholar 

  84. 84.

    Richings, A. J. & Faucher-Giguère, C.-A. Radiative cooling of swept-up gas in AGN-driven galactic winds and its implications for molecular outflows. Mon. Not. R. Astron. Soc. 478, 3100–3119 (2018).

    ADS  Article  Google Scholar 

  85. 85.

    Behroozi, P. S., Wechsler, R. H. & Conroy, C. The average star formation histories of galaxies in dark matter halos from z = 0–8. Astrophys. J. 770, 57 (2013).

    ADS  Article  Google Scholar 

  86. 86.

    Dekel, A., Sari, R. & Ceverino, D. Formation of massive galaxies at high redshift: cold streams, clumpy disks, and compact spheroids. Astrophys. J. 703, 785–801 (2009).

    ADS  Article  Google Scholar 

  87. 87.

    Goerdt, T. et al. Gravity-driven Lyα blobs from cold streams into galaxies. Mon. Not. R. Astron. Soc. 407, 613–631 (2010).

    ADS  Article  Google Scholar 

  88. 88.

    Dekel, A. et al. Toy models for galaxy formation versus simulations. Mon. Not. R. Astron. Soc. 435, 999–1019 (2013).

    ADS  Article  Google Scholar 

  89. 89.

    Lusso, E. et al. Bolometric luminosities and Eddington ratios of X-ray selected active galactic nuclei in the XMM-COSMOS survey. Mon. Not. R. Astron. Soc. 425, 623–640 (2012).

    ADS  Article  Google Scholar 

  90. 90.

    Merloni, A., Heinz, S. & di Matteo, T. A fundamental plane of black hole activity. Mon. Not. R. Astron. Soc. 345, 1057–1076 (2003).

    ADS  Article  Google Scholar 

  91. 91.

    Morganti, R. Archaeology of active galaxies across the electromagnetic spectrum. Nat. Astron. 1, 596–605 (2017).

    ADS  Article  Google Scholar 

  92. 92.

    Delvecchio, I. et al. The VLA-COSMOS 3 GHz Large Project: AGN and host-galaxy properties out to z 6. Astron. Astrophys. 602, A3 (2017).

    Article  Google Scholar 

  93. 93.

    Herrera Ruiz, N. et al. The faint radio sky: VLBA observations of the COSMOS field. Astron. Astrophys. 607, A132 (2017).

    Article  Google Scholar 

  94. 94.

    La Franca, F., Melini, G. & Fiore, F. Tools for computing the AGN feedback: radio-loudness distribution and the kinetic luminosity function. Astrophys. J. 718, 368–379 (2010).

    ADS  Article  Google Scholar 

  95. 95.

    Delvecchio, I. et al. The evolving AGN duty cycle in galaxies since z ~ 3 as encoded in the X-ray luminosity function. Astrophys. J. 892, 17 (2020).

    ADS  Article  Google Scholar 

  96. 96.

    Coogan, R. T. et al. Merger-driven star formation activity in Cl J1449+0856 at z = 1.99 as seen by ALMA and JVLA. Mon. Not. R. Astron. Soc. 479, 703–729 (2018).

    ADS  Google Scholar 

  97. 97.

    Genzel, R. et al. Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago. Nature 543, 397–401 (2017).

    ADS  Article  Google Scholar 

  98. 98.

    Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J. 139, 2097–2129 (2010).

    ADS  Article  Google Scholar 

  99. 99.

    Tadaki, K. et al. Bulge-forming galaxies with an extended rotating disk at z ~ 2. Astrophys. J. 834, 135 (2017).

    ADS  Article  Google Scholar 

  100. 100.

    Elbaz, D. et al. Starbursts in and out of the star-formation main sequence. Astron. Astrophys. 616, A110 (2018).

    Article  Google Scholar 

  101. 101.

    Calistro Rivera, G. et al. Resolving the ISM at the peak of cosmic star formation with ALMA: the distribution of CO and dust continuum in z ~ 2.5 submillimeter galaxies. Astrophys. J. 863, 56 (2018).

    ADS  Article  Google Scholar 

  102. 102.

    Franco, M. et al. GOODS-ALMA: The slow downfall of star-formation in z = 2–3 massive galaxies. Astron. Astrophys. 643, A30 (2020).

    Article  Google Scholar 

  103. 103.

    Tan, Q. et al. Dust and gas in luminous proto-cluster galaxies at z = 4.05: the case for different cosmic dust evolution in normal and starburst galaxies. Astron. Astrophys. 569, A98 (2014).

    Article  Google Scholar 

  104. 104.

    Wang, T. et al. A dominant population of optically invisible massive galaxies in the early Universe. Nature 572, 211–214 (2019).

    ADS  Article  Google Scholar 

  105. 105.

    Young, J. S. & Scoville, N. Z. Molecular gas in galaxies. Ann. Rev. Astron. Astrophys. 29, 581–625 (1991).

    ADS  Article  Google Scholar 

  106. 106.

    Weiß, A., Henkel, C., Downes, D. & Walter, F. Gas and dust in the Cloverleaf quasar at redshift 2.5. Astron. Astrophys. 409, L41–L45 (2003).

    ADS  Article  Google Scholar 

  107. 107.

    Spaans, M. & Meijerink, R. On the detection of high-redshift black holes with ALMA through CO and H2 emission. Astrophys. J. Lett. 678, L5 (2008).

    ADS  Article  Google Scholar 

  108. 108.

    Papadopoulos, P. P. et al. The molecular gas in luminous infrared galaxies I. CO lines, extreme physical conditions and their drivers. Mon. Not. R. Astron. Soc. 426, 2601–2629 (2012).

    ADS  Article  Google Scholar 

  109. 109.

    Papadopoulos, P. P. et al. Molecular gas heating mechanisms and star formation feedback in merger/starbursts: NGC 6240 and Arp 193 as case studies. Astrophys. J. 788, 153 (2014).

    ADS  Article  Google Scholar 

  110. 110.

    Weiß, A., Neininger, N., Hüttemeister, S. & Klein, U. The effect of violent star formation on the state of the molecular gas in M 82. Astron. Astrophys. 365, 571–587 (2001).

    ADS  Article  Google Scholar 

  111. 111.

    Bournaud, F. & Duc, P. A. From tidal dwarf galaxies to satellite galaxies. Astron. Astrophys. 456, 481–492 (2006).

    ADS  Article  Google Scholar 

  112. 112.

    Cicone, C. et al. The physics and the structure of the quasar-driven outflow in Mrk 231. Astron. Astrophys. 543, A99 (2012).

    Article  Google Scholar 

  113. 113.

    van der Wel, A. et al. 3D-HST+CANDELS: the evolution of the galaxy size-mass distribution since z = 3. Astrophys. J. 788, 28 (2014).

    ADS  Article  Google Scholar 

  114. 114.

    Aalto, S., Black, J. H., Booth, R. S. & Johansson, L. E. B. Peculiar molecular clouds in NGC 3256? Astron. Astrophys. 247, 291 (1991).

    ADS  Google Scholar 

  115. 115.

    Sakamoto, K., Ho, P. T. P. & Peck, A. B. Imaging molecular gas in the luminous merger NGC 3256: detection of high-velocity gas and twin gas peaks in the double nucleus. Astrophys. J. 644, 862–878 (2006).

    ADS  Article  Google Scholar 

  116. 116.

    Aalto, S., Hüttemeister, S. & Polatidis, A. G. A molecular tidal tail in the Medusa minor merger. Astron. Astrophys. 372, L29–L32 (2001).

    ADS  Article  Google Scholar 

  117. 117.

    Tacconi, L. J. et al. Gas dynamics in the luminous merger NGC 6240. Astrophys. J. 524, 732–745 (1999).

    ADS  Article  Google Scholar 

  118. 118.

    Feruglio, C. et al. High resolution mapping of CO(1–0) in NGC 6240. Astron. Astrophys. 558, A87 (2013).

    Article  Google Scholar 

  119. 119.

    Toomre, A. & Toomre, J. Galactic bridges and tails. Astrophys. J. 178, 623–666 (1972).

    ADS  Article  Google Scholar 

  120. 120.

    Iono, D., Yun, M. S. & Mihos, J. C. Radial gas flows in colliding galaxies: connecting simulations and observations. Astrophys. J. 616, 199–220 (2004).

    ADS  Article  Google Scholar 

  121. 121.

    Treister, E. et al. The molecular gas in the NGC 6240 merging galaxy system at the highest spatial resolution. Astrophys. J. 890, 149 (2020).

    ADS  Article  Google Scholar 

  122. 122.

    Riechers, D. A. et al. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34. Nature 496, 329–333 (2013).

    ADS  Article  Google Scholar 

  123. 123.

    Fixsen, D. J., Bennett, C. L. & Mather, J. C. COBE far infrared absolute spectrophotometer observations of galactic lines. Astrophys. J. 526, 207–214 (1999).

    ADS  Article  Google Scholar 

Download references


A.P. and E.D. thank A. Renzini for commenting on the manuscript and for useful discussion. A.P. acknowledges funding from Region Île-de-France and an Incoming CEA fellowship from the CEA-Enhanced Eurotalents programme, co-funded by the FP7 Marie-Skłodowska-Curie COFUND programme (grant agreement 600382). A.P. also gratefully acknowledges financial support from the STFC (grants ST/T000244/1 and ST/P000541/1). M.P. acknowledges support from the Comunidad de Madrid through the Atracción de Talento Investigador (grant 2018-T1/TIC-11035). S.J. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (MICIU) (grant AYA2017-84061-P), co-financed by FEDER (European Regional Development Funds).

Author information




A.P. and E.D. reduced the data, interpreted the results and wrote the paper. All other authors contributed to the observing proposals, to the scientific discussion and elaboration of the results, and commented on the manuscript.

Corresponding author

Correspondence to Annagrazia Puglisi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Spectral energy distribution of ID2299.

Dark grey dots represent the observed multi-wavelength photometry and 1σ errors while dark grey arrows indicate 3σ upper limits. The black solid line is the best-fit spectral energy distribution of the source (SED, see Methods for details). The coloured lines represent individual contributions to the best-fit SED from attenuated stellar emission (orange), dust emission from star formation (dark red), AGN (teal) and radio emission (magenta).

Extended Data Fig. 2 Amplitude as a function of the uv distance for ID2299.

Different symbols and colours show the amplitude and 1σ error from the various transitions/continua (see legend). The black line is the best-fit Gaussian profile. The grey shaded area highlights the 1σ error associated to this model and it is comparable to the thickness of the black solid line. The size of the best-fit Gaussian profile and 1σ uncertainty are reported in the upper left corner of the plot.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Puglisi, A., Daddi, E., Brusa, M. et al. A titanic interstellar medium ejection from a massive starburst galaxy at redshift 1.4. Nat Astron (2021). https://doi.org/10.1038/s41550-020-01268-x

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing