Abstract
Low-mass stars show evidence of vigorous magnetic activity in the form of large flares and coronal mass ejections. Such space weather events may have important ramifications for the habitability and observational fingerprints of exoplanetary atmospheres. Here, using a suite of three-dimensional coupled chemistry–climate model simulations, we explore effects of time-dependent stellar activity on rocky planet atmospheres orbiting G, K and M dwarf stars. We employ observed data from the MUSCLES campaign and the Transiting Exoplanet Survey Satellite and test a range of rotation period, magnetic field strength and flare frequency assumptions. We find that recurring flares drive the atmospheres of planets around K and M dwarfs into chemical equilibria that substantially deviate from their pre-flare regimes, whereas the atmospheres of G dwarf planets quickly return to their baseline states. Interestingly, simulated O2-poor and O2-rich atmospheres experiencing flares produce similar mesospheric nitric oxide abundances, suggesting that stellar flares can highlight otherwise undetectable chemical species. Applying a radiative transfer model to our chemistry–climate model results, we find that flare-driven transmission features of bio-indicating chemical species, such as nitrogen dioxide, nitrous oxide and nitric acid, show particular promise for detection by future instruments.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






Data availability
The data that support the plots within this paper and other findings of this study are available from the corresponding author upon request. The raw data are publicly available at https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html (MAST) and https://archive.stsci.edu/prepds/muscles/ (MUSCLES) and the solar ion pair production rates are available at https://solarisheppa.geomar.de/solarprotonfluxes.
Code availability
The unmodified climate model used in this study is available for public download at http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/usersguide/x290.html. Components of the modified version of the climate can be obtained via ExoCam at https://github.com/storyofthewolf/ExoCAM and by request from E.T.W. (eric.wolf@colorado.edu). The stella package can be downloaded at https://github.com/afeinstein20/stella. The remaining codes that support the results within this paper and other findings of this study are available from the corresponding author on request.
References
Borucki, W. J. et al. Kepler planet-detection mission: introduction and first results. Science 327, 977–980 (2010).
Kopparapu, R. K. A revised estimate of the occurrence rate of terrestrial planets in the habitable zones around Kepler M-dwarfs. Astrophys. J. Lett. 767, L8 (2013).
Mulders, G. D., Pascucci, I., Apai, D. & Ciesla, F. J. The exoplanet population observation simulator. I. The inner edges of planetary systems. Astron. J. 156, 24 (2018).
Hsu, D. C., Ford, E. B., Ragozzine, D. & Ashby, K. Occurrence rates of planets orbiting FGK stars: combining Kepler DR25, Gaia DR2, and Bayesian inference. Astron. J. 158, 109 (2019).
Bryson, S. et al. The occurrence of rocky habitable zone planets around solar-like stars from Kepler data. Preprint at https://arxiv.org/abs/2010.14812 (2020).
Kasting, J. F., Whitmire, D. P. & Reynolds, R. T. Habitable zones around main sequence stars. Icarus 101, 108–128 (1993).
Kasting, J. F., Chen, H. & Kopparapu, R. K. Stratospheric temperatures and water loss from moist greenhouse atmospheres of Earth-like planets. Astrophys. J. 813, L3 (2015).
Ricker, G. R. et al. Transiting exoplanet survey satellite. J. Astron. Telesc. Instrum. Syst. 1, 014003 (2014).
Ballard, S. Predicted number, multiplicity, and orbital dynamics of TESS M-dwarf exoplanets. Astron. J. 157, 113 (2019).
Dalba, P. A. et al. Predicted yield of transits of known radial velocity exoplanets from the TESS primary and extended missions. Publ. Astron. Soc. Pac. 131, 034401 (2019).
Scalo, J. et al. M stars as targets for terrestrial exoplanet searches and biosignature detection. Astrobiology 7, 85–166 (2007).
Linsky, J. L. Stellar model chromospheres and spectroscopic diagnostics. Annu. Rev. Astron. Astrophys. 55, 159–211 (2017).
Airapetian, V. S. et al. Impact of space weather on climate and habitability of terrestrial type exoplanets. Int. J. Astrobiol. 19, 136–194 (2020).
Tian, F. & Ida, S. Water contents of Earth-mass planets around M dwarfs. Nat. Geosci. 8, 177–180 (2015).
Becker, J., Gallo, E., Hodges-Kluck, E., Adams, F. C. & Barnes, R. A coupled analysis of atmospheric mass loss and tidal evolution in XUV irradiated exoplanets: the TRAPPIST-1 case study. Astron. J. 159, 275 (2020).
Thurairajah, B., Bailey, S. M. & Hervig, M. E. Northern hemisphere summer mesospheric gravity wave response to solar activity from nine years of aim observation. J. Atmos. Sol. Terr. Phys. 193, 105086 (2019).
Atri, D. Modelling stellar proton event-induced particle radiation dose on close-in exoplanets. Mon. Not. R. Astron. Soc. 465, L34–L38 (2017).
Yamashiki, Y. A. et al. Impact of stellar superflares on planetary habitability. Astrophys. J. 881, 114 (2019).
Airapetian, V. S., Jackman, C. H., Mlynczak, M., Danchi, W. & Hunt, L. Atmospheric beacons of life from exoplanets around G and K stars. Sci. Rep. 7, 14141 (2017).
Hawley, S. L. & Pettersen, B. R. The great flare of 1985 April 12 on AD Leonis. Astrophys. J. 378, 725 (1991).
Segura, A., Walkowicz, L. M., Meadows, V., Kasting, J. & Hawley, S. The effect of a strong stellar flare on the atmospheric chemistry of an Earth-like planet orbiting an M dwarf. Astrobiology 10, 751–771 (2010).
Tilley, M. A., Segura, A., Meadows, V., Hawley, S. & Davenport, J. Modeling repeated M dwarf flaring at an Earth-like planet in the habitable zone: atmospheric effects for an unmagnetized planet. Astrobiology 19, 64–86 (2019).
Grenfell, J. L. et al. Response of atmospheric biomarkers to NOx-induced photochemistry generated by stellar cosmic rays for Earth-like planets in the habitable zone of M dwarf stars. Astrobiology 12, 1109–1122 (2012).
Venot, O., Rocchetto, M., Carl, S., Roshni Hashim, A. & Decin, L. Influence of stellar flares on the chemical composition of exoplanets and spectra. Astrophys. J. 830, 77 (2016).
Krissansen-Totton, J., Olson, S. & Catling, D. C. Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life. Sci. Adv. 4, eaao5747 (2018).
Schwieterman, E. W. et al. Exoplanet biosignatures: a review of remotely detectable signs of life. Astrobiology 18, 663–708 (2018).
Des Marais, D. J. et al. Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2, 153–181 (2002).
Tabataba-Vakili, F., Grenfell, J. L., Grießmeier, J. M. & Rauer, H. Atmospheric effects of stellar cosmic rays on Earth-like exoplanets orbiting M-dwarfs. Astron. Astrophys. 585, A96 (2016).
Scheucher, M. et al. New insights into cosmic-ray-induced biosignature chemistry in Earth-like atmospheres. Astrophys. J. 863, 6 (2018).
Yang, J., Cowan, N. B. & Abbot, D. S. Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets. Astrophys. J. Lett. 771, L45 (2013).
Chen, H., Wolf, E. T., Kopparapu, R., Domagal-Goldman, S. & Horton, D. E. Biosignature anisotropy modeled on temperate tidally locked M-dwarf planets. Astrophys. J. Lett. 868, L6 (2018).
Chen, H., Wolf, E. T., Zhan, Z. & Horton, D. E. Habitability and spectroscopic observability of warm M-dwarf exoplanets evaluated with a 3D chemistry-climate model. Astrophys. J. 886, 16 (2019).
Loyd, R. O. P. et al. The MUSCLES Treasury Survey. V. FUV flares on active and inactive M dwarfs. Astrophys. J. 867, 71 (2018).
Peacock, S., Barman, T., Shkolnik, E. L., Hauschildt, P. H. & Baron, E. Predicting the extreme ultraviolet radiation environment of exoplanets around low-mass stars: the TRAPPIST-1 system. Astrophys. J. 871, 235 (2019).
Marsh, D. R. et al. Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Clim. 26, 7372–7391 (2013).
Way, M. J. et al. Was Venus the first habitable world of our solar system? Geophys. Res. Lett. 43, 8376–8383 (2016).
Shields, A. L., Bitz, C. M., Meadows, V. S., Joshi, M. M. & Robinson, T. D. Spectrum-driven planetary deglaciation due to increases in stellar luminosity. Astrophys. J. Lett. 785, L9 (2014).
Checlair, J., Menou, K. & Abbot, D. S. No snowball on habitable tidally locked planets. Astrophys. J. 845, 132 (2017).
Checlair, J. H., Olson, S. L., Jansen, M. F. & Abbot, D. S. No snowball on habitable tidally locked planets with a dynamic ocean. Astrophys. J. Lett. 884, L46 (2019).
Olson, S. L., Jansen, M. & Abbot, D. S. Oceanographic considerations for exoplanet life detection. Astrophys. J. 895, 19 (2020).
Christensen, U. R., Holzwarth, V. & Reiners, A. Energy flux determines magnetic field strength of planets and stars. Nature 457, 167–169 (2009).
Lean, J., Beer, J. & Bradley, R. Reconstruction of solar irradiance since 1610: implications for climate change. Geophys. Res. Lett. 22, 3195–3198 (1995).
France, K. et al. The MUSCLES Treasury Survey. I. Motivation and overview. Astrophys. J. 820, 89 (2016).
Feinstein, A. D. et al. Flare statistics for young stars from a convolutional neural network analysis of TESS data. Astron. J. 160, 219 (2020).
Youngblood, A. et al. The MUSCLES Treasury Survey. IV. Scaling relations for ultraviolet, Ca II K, and energetic particle fluxes from M dwarfs. Astrophys. J. 843, 31 (2017).
Jackman, C. H. et al. Neutral atmospheric influences of the solar proton events in October–November 2003. J. Geophys. Res. Space Phys. 110, A09S27 (2005).
Solomon, S., Rusch, D. W., Gerard, J. C., Reid, G. C. & Crutzen, P. J. The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere: II. Odd hydrogen. Planet. Space Sci. 29, 885–893 (1981).
Segura, A. in Handbook of Exoplanets (eds Deeg, H. & Belmonte, J.) 2995–3017 (Springer, 2018).
Günther, M. N. et al. Stellar flares from the first TESS data release: exploring a new sample of M dwarfs. Astron. J. 159, 60 (2020).
Carone, L., Keppens, R., Decin, L. & Henning, T. Stratosphere circulation on tidally locked ExoEarths. Mon. Not. R. Astron. Soc. 473, 4672–4685 (2018).
Funke, B. et al. Downward transport of upper atmospheric NOx into the polar stratosphere and lower mesosphere during the Antarctic 2003 and Arctic 2002/2003 winters. J. Geophys. Res. Atmos. 110, D24308 (2005).
Kasting, J. F. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472–494 (1988).
Fauchez, T. J. et al. Impact of clouds and hazes on the simulated JWST transmission spectra of habitable zone planets in the TRAPPIST-1 system. Astrophys. J. 887, 194 (2019).
Komacek, T. D., Fauchez, T. J., Wolf, E. T. & Abbot, D. S. Clouds will likely prevent the detection of water vapor in JWST transmission spectra of terrestrial exoplanets. Astrophys. J. Lett. 888, L20 (2020).
Suissa, G. et al. Dim prospects for transmission spectra of ocean Earths around M stars. Astrophys. J. 891, 58 (2020).
Dong, C. et al. The dehydration of water worlds via atmospheric losses. Astrophys. J. Lett. 847, L4 (2017).
Mordasini, C. Planetary evolution with atmospheric photoevaporation. I. Analytical derivation and numerical study of the evaporation valley and transition from super-Earths to sub-Neptunes. Astron. Astrophys. 638, A52 (2020).
Davenport, J. R. A. The Kepler catalog of stellar flares. Astrophys. J. 829, 23 (2016).
Yang, H. et al. The flaring activity of M dwarfs in the Kepler field. Astrophys. J. 849, 36 (2017).
Kite, E. S. & Barnett, M. N. Exoplanet secondary atmosphere loss and revival. Proc. Natl Acad. Sci. USA 117, 18264–18271 (2020).
Domagal-Goldman, S. D., Meadows, V. S., Claire, M. W. & Kasting, J. F. Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets. Astrobiology 11, 419–441 (2011).
Neale, R. B. et al. Description of the NCR Community Atmosphere Model (CAM 5.0) Technical Note NCAR/TN-486+ STR (NCAR, 2010).
Zhang, M., Lin, W., Bretherton, C. S., Hack, J. J. & Rasch, P. J. A modified formulation of fractional stratiform condensation rate in the NCAR Community Atmospheric Model (CAM2). J. Geophys. Res. Atmos. 108, 4035 (2003).
Zhang, G. J. & McFarlane, N. A. Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model. Atmos. Ocean 33, 407–446 (1995).
Hack, J. J. Parameterization of moist convection in the National Center for Atmospheric Research Community Climate Model (CCM2). J. Geophys. Res. 99, 5551–5568 (1994).
Kinnison, D. E. et al. Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. J. Geophys. Res. Atmos. 112, D20302 (2007).
Montgomery, A. & Holloway, T. Assessing the relationship between satellite-derived NO2 and economic growth over the 100 most populous global cities. J. Appl. Remote Sensing 12, 042607 (2018).
Yates, J. S. et al. Ozone chemistry on tidally locked M dwarf planets. Mon. Not. R. Astron. Soc. 492, 1691–1705 (2020).
Yang, J., Abbot, D. S., Koll, D. D. B., Hu, Y. & Showman, A. P. Ocean dynamics and the inner edge of the habitable zone for tidally locked terrestrial planets. Astrophys. J. 871, 29 (2019).
Salazar, A. M., Olson, S. L., Komacek, T. D., Stephens, H. & Abbot, D. S. The effect of substellar continent size on ocean dynamics of Proxima Centauri b. Astrophys. J. Lett. 896, L16 (2020).
Del Genio, A. D. et al. Habitable climate scenarios for Proxima Centauri b with a dynamic ocean. Astrobiology 19, 99–125 (2019).
Gray, R. O. et al. Contributions to the Nearby Stars (NStars) Project: spectroscopy of stars earlier than M0 within 40 pc—the southern sample. Astron. J. 132, 161–170 (2006).
Schmidt, S. J., Cruz, K. L., Bongiorno, B. J., Liebert, J. & Reid, I. N. Activity and kinematics of ultracool dwarfs, including an amazing flare observation. Astron. J. 133, 2258–2273 (2007).
Kopparapu, R. K. et al. The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models. Astrophys. J. 819, 84 (2016).
Poulsen, C. J., Tabor, C. & White, J. D. Long-term climate forcing by atmospheric oxygen concentrations. Science 348, 1238–1241 (2015).
Payne, R. C., Britt, A. V., Chen, H., Kasting, J. F. & Catling, D. C. The response of Phanerozoic surface temperature to variations in atmospheric oxygen concentration. J. Geophys. Res. Atmos. 121, 10089–10096 (2016).
Wade, D. C. et al. Simulating the climate response to atmospheric oxygen variability in the Phanerozoic: a focus on the Holocene, Cretaceous and Permian. Clim. Past 15, 1463–1483 (2019).
Wolf, E. T., Kopparapu, R. K. & Haqq-Misra, J. Simulated phase-dependent spectra of terrestrial aquaplanets in M dwarf systems. Astrophys. J. 877, 35 (2019).
Roble, R. G. & Ridley, E. C. A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): equinox solar cycle minimum simulations (30–500 km). Geophys. Res. Lett. 21, 417–420 (1994).
Banks, P. M. & Kockarts, G. in Aeronomy: Part B Ch.15 (Elsevier, 1973).
Collins, W. D. et al. The Community Climate System Model version 3 (CCSM3). J. Clim. 19, 2122–2143 (2006).
Fomichev, V., Blanchet, J.-P. & Turner, D. Matrix parameterization of the 15 μm CO2 band cooling in the middle and upper atmosphere for variable CO2 concentration. J. Geophys. Res. Atmos. 103, 11505–11528 (1998).
Lean, J. Evolution of the Sun’s spectral irradiance since the Maunder minimum. Geophys. Res. Lett. 27, 2425–2428 (2000).
Solomon, S. C. & Qian, L. Solar extreme-ultraviolet irradiance for general circulation models. J. Geophys. Res. Space Phys. 110, A10306 (2005).
Wang, Y.-M., Lean, J. L. & Sheeley, N. R.Jr. Modeling the sun’s magnetic field and irradiance since 1713. Astrophys. J. 625, 522 (2005).
Kopparapu, R. K. et al. Habitable moist atmospheres on terrestrial planets near the inner edge of the habitable zone around M dwarfs. Astrophys. J. 845, 5 (2017).
López-Puertas, M. et al. Observation of NOx enhancement and ozone depletion in the Northern and Southern Hemispheres after the October-November 2003 solar proton events. J. Geophys. Res. Space Phys. 110, A09S43 (2005).
Jackman, C. et al. Short-and medium-term atmospheric constituent effects of very large solar proton events. Atmos. Chem. Phys. 8, 765–785 (2008).
Loyd, R. O. P. et al. The MUSCLES Treasury Survey. III. X-Ray to infrared spectra of 11 M and K stars hosting planets. Astrophys. J. 824, 102 (2016).
Youngblood, A. et al. The MUSCLES Treasury Survey. II. Intrinsic Lyα and extreme ultraviolet spectra of K and M dwarfs with exoplanets*. Astrophys. J. 824, 101 (2016).
Husser, T.-O. et al. A new extensive library of PHOENIX stellar atmospheres and synthetic spectra. Astron. Astrophys. 553, A6 (2013).
Turbet, M., Bourrier, V. & Leconte, J. A review of possible planetary atmospheres in the TRAPPIST-1 system. Space Sci. Rev. 216, 100 (2020).
Candelaresi, S., Hillier, A., Maehara, H., Brand enburg, A. & Shibata, K. Superflare occurrence and energies on G-, K-, and M-type dwarfs. Astrophys. J. 792, 67 (2014).
Kay, C., Airapetian, V. S., Lüftinger, T. & Kochukhov, O. Frequency of coronal mass ejection impacts with early terrestrial planets and exoplanets around active solar-like stars. Astrophys. J. Lett. 886, L37 (2019).
Hawley, S. L. et al. Kepler flares. I. Active and inactive M dwarfs. Astrophys. J. 797, 121 (2014).
Kowalski, A. F. et al. Time-resolved properties and global trends in dMe flares from simultaneous photometry and spectra. Astrophys. J Suppl. Ser. 207, 15 (2013).
Loyd, R. O. P. et al. HAZMAT. IV. Flares and superflares on young M stars in the far ultraviolet. Astrophys. J. 867, 70 (2018).
Froning, C. S. et al. A hot ultraviolet flare on the M dwarf star GJ 674. Astrophys. J. Lett. 871, L26 (2019).
Hilton, E. J. The Galactic M Dwarf Flare Rate. PhD thesis, Univ. Washington (2011).
Feinstein, A., Montet, B. & Ansdell, M. stella: convolutional neural networks for flare identification in TESS. J. Open Source Softw. 5, 2347 (2020).
Güdel, M., Audard, M., Reale, F., Skinner, S. L. & Linsky, J. L. Flares from small to large: X-ray spectroscopy of Proxima Centauri with XMM-Newton. Astron. Astrophys. 416, 713–732 (2004).
Stelzer, B., Schmitt, J. H. M. M., Micela, G. & Liefke, C. Simultaneous optical and X-ray observations of a giant flare on the ultracool dwarf LP 412-31. Astron. Astrophys. 460, L35–L38 (2006).
Gopalswamy, N. et al. Properties of ground level enhancement events and the associated solar eruptions during solar cycle 23. Space Sci. Rev. 171, 23–60 (2012).
Sinnhuber, M., Nieder, H. & Wieters, N. Energetic particle precipitation and the chemistry of the mesosphere/lower thermosphere. Surv. Geophys. 33, 1281–1334 (2012).
Franciosini, E., Pallavicini, R. & Tagliaferri, G. BeppoSAX observation of a large long-duration X-ray flare from UX Arietis. Astron. Astrophys. 375, 196–204 (2001).
Ejzak, L. M., Melott, A. L., Medvedev, M. V. & Thomas, B. C. Terrestrial consequences of spectral and temporal variability in ionizing photon events. Astrophys. J. 654, 373–384 (2007).
Pettit, J. et al. Effects of the September 2005 solar flares and solar proton events on the middle atmosphere in WACCM. J. Geophys. Res. Space Phys. 5747–5763 (2018).
Belov, A., Garcia, H., Kurt, V., Mavromichalaki, H. & Gerontidou, M. Proton enhancements and their relation to the x-ray flares during the three last solar cycles. Solar Phys. 229, 135–159 (2005).
Cliver, E. W., Ling, A. G., Belov, A. & Yashiro, S. Size distributions of solar flares and solar energetic particle events. Astrophys. J. Lett. 756, L29 (2012).
Herbst, K., Papaioannou, A., Banjac, S. & Heber, B. From solar to stellar flare characteristics. On a new peak size distribution for G-, K-, and M-dwarf star flares. Astron. Astrophys. 621, A67 (2019).
Jacob, D. J. Introduction to Atmospheric Chemistry (Princeton Univ. Press, 1999).
Ball, S. Atmospheric Chemistry at Night ECGEB No. 3 (RSC, 2014); https://go.nature.com/3lryV6G
Porter, H. S., Jackman, C. H. & Green, A. E. S. Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air. J. Chem. Phys. 65, 154–167 (1976).
Scheucher, M. et al. New insights into cosmic-ray-induced biosignature chemistry in Earth-like atmospheres. Astrophys. J. 863, 6 (2018).
Herbst, K. et al. A new model suite to determine the influence of cosmic rays on (exo)planetary atmospheric biosignatures. Validation based on modern Earth. Astron. Astrophys. 631, A101 (2019).
Kempton, E. M.-R., Bean, J. L. & Parmentier, V. An observational diagnostic for distinguishing between clouds and haze in hot exoplanet atmospheres. Astrophys. J. Lett. 845, L20 (2017).
Miller-Ricci, E., Meyer, M. R., Seager, S. & Elkins-Tanton, L. On the emergent spectra of hot protoplanet collision afterglows. Astrophys. J. 704, 770–780 (2009).
Gordon, I. E. et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Rad. Transfer 203, 3–69 (2017).
Bernath, P. F. et al. Atmospheric chemistry experiment (ace): mission overview. Geophys. Res. Lett. 32, L15S01 (2005).
Acknowledgements
H.C. and D.E.H. acknowledge support from the Future Investigators in NASA Earth and Space Science and Technology (FINESST) Graduate Research Award Number 80NSSC19K1523. H.C. thanks P. Loyd for assistance in the use of his MUSCLES flare code and for sharing it with the public. Z.Z. acknowledges support from the MIT BOSE Fellow programme, the Change Happens Foundation and the Heising-Simons Foundation. E.T.W. acknowledges support from NASA Habitable Worlds grant number 80NSSC17K0257. A.D.F. acknowledges support from NSF Graduate Research Fellowship Program grant number DGE-1746045. We thank A. Gu for ozone variability analysis inspiration and the QUEST high-performance computing facility at Northwestern University for computational and staff resources. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding agencies. This paper includes data collected by the TESS mission. Funding for the TESS mission is provided by the NASA Explorer Program. TESS data were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract number NAS5-26555. Support for MAST is provided by the NASA Office of Space Science via grant number NNX13AC07G and by other grants and contracts.
Author information
Authors and Affiliations
Contributions
H.C., E.T.W. and D.E.H. conceived and designed the study. H.C. conducted the numerical model simulations and data analysis. Z.Z. performed the radiative transfer model simulations. A.Y. provided stellar input data from the MUSCLES and Mega-MUSCLES surveys. A.D.F. performed the machine learning TESS data reductions. H.C. wrote the manuscript with input from all co-authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Astronomy thanks Antigona Segura and Eric Hébrard for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Input broadband (a) and UV (b) spectral energy distributions for the Sun, HD85512, and TRAPPIST-1.
The Sun represents the G-star archetype, HD85512 a K-star, and TRAPPIST-1 a late M-star. We refer to the stellar spectral types these stars represent (G-star, K-star, and M-star) instead of the specific star in the main text and throughout the paper.
Extended Data Fig. 2 Timeseries of TESS lightcurves used in this study.
The stellar data used are those of TIC 671393 (a) and TIC 1636399 (b), showing identified flares by orange ‘ × ’s. Flares are identified by a convolutional neural network algorithm described in Feinstein et al. (2020).
Extended Data Fig. 3 Three scenarios of input vertical-mean ionization rates to explore the effects of flare frequency.
Three different assumptions are investigated: α = 0.7, 0.82, 0.54. Supplementary Table 1 lists the specific experiments and their assumed flare frequency.
Extended Data Fig. 4 Spatial and temporal atmospheric effects of repeated stellar flaring on an M-star planet.
Simulated global time slice distributions of upper atmospheric NO (a-d), OH (e-h), and O3 (i-l) concentrations and their global average time-series (m) that result from exposure to flares with time-evolving proton fluences (n). The simulated planet rotates around M-star TRAPPIST-1 synchronously and has a weak magnetic field. and OH mixing ratios are reported at 0.1 hPa, whereas O3 mixing ratios are reported at 1.0 hPa. Spherical projections are centered on 40∘ N latitude and 225∘ longitude. Red cross denotes the substellar point.
Extended Data Fig. 5 Temporal evolution of global-mean mixing ratios of NO, OH, and O3 experiencing TESS flares.
Result demonstrate that small flares over a short timespan do not substantially affect exoplanetary atmospheres. NO and OH mixing ratios are reported at 0.1 hPa, whereas O3 mixing ratios are reported at 1.0 hPa.
Extended Data Fig. 6 Global-mean vertical profiles of ozone number density at three different stellar flare frequencies.
These results show the cumulative effect (300 Earth days) of repeated stellar flares. Results that assume α approaching those of observed MUSCLES stars (α = 0.7) established a new chemical equilibrium, whereas those using a values close to very active stars (α = 0.54) have their ozone layers rapidly depleted.
Extended Data Fig. 7 Zonal mean of zonal wind, O3 mixing ratios (10−8), and meridional circulation stream functions for hypothetical O2-rich planets around a G-star, K-star, and M-star as denoted.
Results demonstrate the convolved effects of dynamics and atmospheric chemistry.
Extended Data Fig. 8 NO concentration averaged over the poles (\(\left|{\rm{latitude}}\right|>6{5}^{\circ }\)) as a function of time and pressure for hypothetical O2-rich planets.
The rotation periods of these simulations are 24 hours, 92 Earth days, and 4.32 Earth days around a G-dwarf (a), K-dwarf (b), and M-dwarf (c) star. Note the log10-scale.
Supplementary information
Supplementary Information
Supplementary Tables 1 and 2.
Rights and permissions
About this article
Cite this article
Chen, H., Zhan, Z., Youngblood, A. et al. Persistence of flare-driven atmospheric chemistry on rocky habitable zone worlds. Nat Astron 5, 298–310 (2021). https://doi.org/10.1038/s41550-020-01264-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-020-01264-1