Abstract
Jellyfish galaxies have long tails of gas that is stripped from the disk by ram pressure due to the motion of galaxies in the intracluster medium in galaxy clusters. Here, we present the magnetic field strength and orientation within the disk and the (90-kpc-long) Hα-emitting tail of the jellyfish galaxy JO206. The tail has a large-scale magnetic field (>4.1 μG), a steep radio spectral index (α ≈ −2.0), indicating an ageing of the electrons propagating away from the star-forming regions, and extremely high fractional polarization (>50 %), indicating low turbulent motions. The magnetic field vectors are aligned with (parallel to) the direction of the ionized-gas tail and stripping direction. High-resolution simulations of a large, cold gas cloud that is exposed to a hot, magnetized turbulent wind show that the fractional polarization and ordered magnetic field can be explained by accretion of draped magnetized plasma from the hot wind that condenses onto the external layers of the tail, where it is adiabatically compressed and sheared. The ordered magnetic field, preventing heat and momentum exchange, may be a key factor in allowing in situ star formation in the tail.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






Data availability
The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request. The JVLA 1.4 GHz data are available in the National Radio Astronomy Observatory (NRAO) archive (https://science.nrao.edu/facilities/vla/archive/index) and can be found via the project numbers stated in the Methods. At the end of this year, the 2.7 GHz data will also be available in the NRAO archive and can also be found via the project numbers stated in the Methods.
Code availability
The code used during data preparation and analysis is public and available from the corresponding author on reasonable request. The Arepo code, which was used for the present simulations, is also publicly available64.
References
Schmidt, M. The rate of star formation. Astrophys. J. 129, 243–258 (1959).
Kennicutt, R. C. Jr The star formation law in galactic disks. Astrophys. J. 344, 685–703 (1989).
Cayatte, V., van Gorkom, J. H., Balkowski, C. & Kotanyi, C. VLA observations of neutral hydrogen in Virgo Cluster galaxies. I. The Atlas. Astron. J. 100, 604–634 (1990).
Jaffé, Y. L. et al. BUDHIES II: a phase-space view of H i gas stripping and star formation quenching in cluster galaxies. Mon. Not. R. Astron. Soc. 448, 1715–1728 (2015).
Williams, B. A. & Rood, H. J. Neutral hydrogen in compact groups of galaxies. Astrophys. J. 63, 265–294 (1987).
Serra, P. et al. Discovery of a giant H i tail in the galaxy group HCG 44. Mon. Not. R. Astron. Soc. 428, 370–380 (2013).
Fumagalli, M. et al. MUSE sneaks a peek at extreme ram-pressure stripping events—I. A kinematic study of the archetypal galaxy ESO137-001. Mon. Not. R. Astron. Soc. 445, 4335–4344 (2014).
Poggianti, B. M. et al. GASP XIII. Star formation in gas outside galaxies. Mon. Not. R. Astron. Soc. 482, 4466–4502 (2019).
Vulcani, B. et al. Enhanced star formation in both disks and ram-pressure-stripped tails of GASP jellyfish galaxies. Astrophys. J. 866, L25 (2018).
Crutcher, R. M. Magnetic fields in molecular clouds. Annu. Rev. Astron. Astrophys. 50, 29–63 (2012).
Beck, R. & Wielebinski, R. in Planets, Stars and Stellar Systems. Volume 5: Galactic Structure and Stellar Populations 641–723 (Springer, 2013).
Li, H.-B. & Henning, T. The alignment of molecular cloud magnetic fields with the spiral arms in M33. Nature 479, 499–501 (2011).
Beck, R. et al. Magnetic fields in barred galaxies. IV. NGC 1097 and NGC 1365. Astron. Astrophys. 444, 739–765 (2005).
Gavazzi, G. in The Minnesota Lectures on Clusters of Galaxies and Large-Scale Structure 115–142 (ASP, 1988).
Gavazzi, G. et al. The radio and optical structure of three peculiar galaxies in A 1367. Astron. Astrophys. 304, 325–340 (1995).
Vollmer, B. et al. The influence of the cluster environment on the large-scale radio continuum emission of 8 Virgo cluster spirals. Astron. Astrophys. 512, A36 (2010).
Vollmer, B. et al. Large-scale radio continuum properties of 19 Virgo cluster galaxies. The influence of tidal interactions, ram pressure stripping, and accreting gas envelopes. Astron. Astrophys. 553, A116 (2013).
Vijayaraghavan, R. & Ricker, P. M. The co-evolution of a magnetized intracluster medium and hot galactic coronae: magnetic field amplification and turbulence generation. Astrophys. J. 841, 38 (2017).
Ramos-Martínez, M., Gómez, G. C. & Pérez-Villegas, A. MHD simulations of ram pressure stripping of a disk galaxy. Mon. Not. R. Astron. Soc. 476, 3781–3792 (2018).
Tonnesen, S. & Stone, J. The ties that bind? Galactic magnetic fields and ram pressure stripping. Astrophys. J. 795, 148 (2014).
Vollmer, B. et al. The characteristic polarized radio continuum distribution of cluster spiral galaxies. Astron. Astrophys. 464, L37–L40 (2007).
Dursi, L. J. & Pfrommer, C. Draping of cluster magnetic fields over bullets and bubbles—morphology and dynamic effects. Astrophys. J. 677, 993–1018 (2008).
Pfrommer, C. & Dursi, L. J. Detecting the orientation of magnetic fields in galaxy clusters. Nat. Phys. 6, 520–526 (2010).
Ruszkowski, M., Brüggen, M., Lee, D. & Shin, M.-S. Impact of magnetic fields on ram pressure stripping in disk galaxies. Astrophys. J. 784, 75 (2014).
Berlok, T. & Pfrommer, C. The impact of magnetic fields on cold streams feeding galaxies. Mon. Not. R. Astron. Soc. 489, 3368–3384 (2019).
Ramatsoku, M. et al. GASP—XVII. H i imaging of the jellyfish galaxy JO206: gas stripping and enhanced star formation. Mon. Not. R. Astron. Soc. 487, 4580–4591 (2019).
Poggianti, B. M. et al. GASP. I. Gas stripping phenomena in galaxies with MUSE. Astrophys. J. 844, 48 (2017).
Poggianti, B. M. et al. Ram-pressure feeding of supermassive black holes. Nature 548, 304–309 (2017).
Gullieuszik, M. et al. GASP. XXI. Star formation rates in the tails of galaxies undergoing ram-pressure stripping. Astrophys. J. 899, 13 (2020).
Niklas, S., Klein, U. & Wielebinski, R. A radio continuum survey of Shapley-Ames galaxies at λ 2.8 cm. II. Separation of thermal and non-thermal radio emission. Astron. Astrophys. 322, 19–28 (1997).
Liu, R., Pooley, G. & Riley, J. M. Spectral ageing in a sample of 14 high-luminosity double radio sources. Mon. Not. R. Astron. Soc. 257, 545–571 (1992).
Winner, G., Pfrommer, C., Girichidis, P. & Pakmor, R. Evolution of cosmic ray electron spectra in magnetohydrodynamical simulations. Mon. Not. R. Astron. Soc. 488, 2235–2252 (2019).
Chen, H. et al. The ram pressure stripped radio tails of galaxies in the Coma cluster. Mon. Not. R. Astron. Soc. 496, 4654–4673 (2020).
Beck, R. & Krause, M. Revised equipartition and minimum energy formula for magnetic field strength estimates from radio synchrotron observations. Astron. Nachr. 326, 414–427 (2005).
Krause, M. et al. CHANG-ES. IX. Radio scale heights and scale lengths of a consistent sample of 13 spiral galaxies seen edge-on and their correlations. Astron. Astrophys. 611, A72 (2018).
Beck, R. Galactic and extragalactic magnetic fields—a concise review. Astrophys. Space Sci. Trans. 5, 43–47 (2009).
Sparre, M., Pfrommer, C. & Ehlert, K. Interaction of a cold cloud with a hot wind: the regimes of cloud growth and destruction and the impact of magnetic fields. Preprint at https://arxiv.org/abs/2008.09118 (2020).
Moretti, A. et al. The high molecular gas content, and the efficient conversion of neutral into molecular gas, in jellyfish galaxies. Astrophys. J. Lett. 897, L30 (2020).
Beck, R. Magnetic fields in spiral galaxies. Astron. Astrophys. Rev. 24, 4 (2015).
Stil, J. M., Krause, M., Beck, R. & Taylor, A. R. The integrated polarization of spiral galaxy disks. Astrophys. J. 693, 1392–1403 (2009).
Miley, G. K. Brightness and polarization distributions of head-tail galaxies at 1415 MHz. Astron. Astrophys. 26, 413–421 (1973).
Springel, V. Moving-mesh hydrodynamics with the AREPO code. Proc. Int. Astron. Union 6, 203–206 (2010).
Pakmor, R. & Springel, V. Simulations of magnetic fields in isolated disk galaxies. Mon. Not. R. Astron. Soc. 432, 176–193 (2013).
Pakmor, R. et al. Improving the convergence properties of the moving-mesh code AREPO. Mon. Not. R. Astron. Soc. 455, 1134–1143 (2015).
Gronke, M. & Oh, S. P. The growth and entrainment of cold gas in a hot wind. Mon. Not. R. Astron. Soc. 480, L111–L115 (2018).
Li, Z., Hopkins, P. F., Squire, J. & Hummels, C. On the survival of cool clouds in the circumgalactic medium. Mon. Not. R. Astron. Soc. 492, 1841–1854 (2020).
Dursi, L. J. Bubble wrap for bullets: the stability imparted by a thin magnetic layer. Astrophys. J. 670, 221–230 (2007).
Offringa, A. R., van de Gronde, J. J. & Roerdink, J. B. T. M. A morphological algorithm for improving radio-frequency interference detection. Astron. Astrophys. 539, A95 (2012).
Perley, R. A. & Butler, B. J. An accurate flux density scale from 1 to 50 GHz. Astrophys. J. Suppl. Ser. 204, 19 (2013).
Perley, R. A. & Butler, B. J. An accurate flux density scale from 50 MHz to 50 GHz. Astrophys. J. Suppl. Ser. 230, 7 (2017).
Brentjens, M. A. & de Bruyn, A. G. Faraday rotation measure synthesis. Astron. Astrophys. 441, 1217–1228 (2005).
Wardle, J. F. C. & Kronberg, P. P. The linear polarization of quasi-stellar radio sources at 3.71 and 11.1 centimeters. Astrophys. J. 194, 249–255 (1974).
Heald, G., Braun, R. & Edmonds, R. The Westerbork SINGS survey. II Polarization, Faraday rotation, and magnetic fields. Astron. Astrophys. 503, 409–435 (2009).
Adebahr, B., Krause, M., Klein, U., Heald, G. & Dettmar, R.-J. M 82—A radio continuum and polarisation study. II. Polarisation and rotation measures. Astron. Astrophys. 608, A29 (2017).
Gurvich, A. B. et al. Pressure balance in the multiphase ISM of cosmologically simulated disk galaxies. Mon. Not. R. Astron. Soc. 498, 3664–3683 (2020).
Powell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I. & De Zeeuw, D. L. A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154, 284–309 (1999).
Scannapieco, E. & Brüggen, M. The launching of cold clouds by galaxy outflows. I. Hydrodynamic interactions with radiative cooling. Astrophys. J. 805, 158 (2015).
Schneider, E. E. & Robertson, B. E. Hydrodynamical coupling of mass and momentum in multiphase galactic winds. Astrophys. J. 834, 144 (2017).
McCourt, M., O’Leary, R. M., Madigan, A.-M. & Quataert, E. Magnetized gas clouds can survive acceleration by a hot wind. Mon. Not. R. Astron. Soc. 449, 2–7 (2015).
Ehlert, K., Weinberger, R., Pfrommer, C., Pakmor, R. & Springel, V. Simulations of the dynamics of magnetized jets and cosmic rays in galaxy clusters. Mon. Not. R. Astron. Soc. 481, 2878–2900 (2018).
Vogelsberger, M. et al. A model for cosmological simulations of galaxy formation physics. Mon. Not. R. Astron. Soc. 436, 3031–3067 (2013).
Condon, J. J. Radio emission from normal galaxies. Annu. Rev. Astron. Astrophys. 30, 575–611 (1992).
Kaiser, C. R. The flat synchrotron spectra of partially self-absorbed jets revisited. Mon. Not. R. Astron. Soc. 367, 1083–1094 (2006).
Weinberger, R., Springel, V. & Pakmor, R. The AREPO public code release. Astrophys. J. 248, 32 (2020).
Acknowledgements
This work is based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere under ESO programme 196.B-0578. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements 833824 and 679627). We acknowledge funding from the INAF mainstream funding programme (principal investigator B.V.) and from the agreement ASI-INAF n.2017-14-H.0. B.V. acknowledges the Italian PRIN-Miur 2017 (principal investigator A. Cimatti). C.P. acknowledges support by the ERC under ERC-CoG grant CRAGSMAN-646955.
Author information
Authors and Affiliations
Contributions
A. Müller carried out the imaging and analysis of the 2.7 GHz data as well as its interpretation, contributed to the comparison of the radio and optical data, and coordinated the research. B.P. provided the data from the Multi Unit Spectroscopic Explorer (MUSE), an integral field spectrograph, used in this paper and the measurements of the SFRD, contributed to the comparison of the radio and optical data and its interpretation. A. Müller, B.P. and C.P. contributed to the text of the manuscript. C.P. contributed to the various magnetic field estimates and M.S. ran the simulations; M.S. and C.P. contributed to the analysis code, the synchrotron modelling and the interpretation of the simulations. P.S. carried out the 1.4 GHz data reduction and contributed to the interpretation of the results. B.A. contributed to the 2.7 GHz data reduction and its interpretation. A.I. and M.G. carried out the analysis of the archival Chandra X-ray observation to asses the thermal properties of the cluster. R.-J.D. contributed to the scientific discussion. B.V. and A. Moretti contributed to the MUSE data acquisition and analysis, and the interpretation of the results.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Astronomy thanks Rüdiger Pakmor and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–7, Results and Discussion, and Tables 1–3.
Rights and permissions
About this article
Cite this article
Müller, A., Poggianti, B.M., Pfrommer, C. et al. Highly ordered magnetic fields in the tail of the jellyfish galaxy JO206. Nat Astron 5, 159–168 (2021). https://doi.org/10.1038/s41550-020-01234-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-020-01234-7
This article is cited by
-
Ram pressure stripping in high-density environments
The Astronomy and Astrophysics Review (2022)
-
The sharpest ultraviolet view of the star formation in an extreme environment of the nearest Jellyfish Galaxy IC 3418
Journal of Astrophysics and Astronomy (2021)