Highly ordered magnetic fields in the tail of the jellyfish galaxy JO206

Abstract

Jellyfish galaxies have long tails of gas that is stripped from the disk by ram pressure due to the motion of galaxies in the intracluster medium in galaxy clusters. Here, we present the magnetic field strength and orientation within the disk and the (90-kpc-long) Hα-emitting tail of the jellyfish galaxy JO206. The tail has a large-scale magnetic field (>4.1 μG), a steep radio spectral index (α ≈ −2.0), indicating an ageing of the electrons propagating away from the star-forming regions, and extremely high fractional polarization (>50 %), indicating low turbulent motions. The magnetic field vectors are aligned with (parallel to) the direction of the ionized-gas tail and stripping direction. High-resolution simulations of a large, cold gas cloud that is exposed to a hot, magnetized turbulent wind show that the fractional polarization and ordered magnetic field can be explained by accretion of draped magnetized plasma from the hot wind that condenses onto the external layers of the tail, where it is adiabatically compressed and sheared. The ordered magnetic field, preventing heat and momentum exchange, may be a key factor in allowing in situ star formation in the tail.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Total intensity results of the 2.7 GHz data.
Fig. 2: Polarization results of the 2.7 GHz data.
Fig. 3: Large-scale alignment of the magnetic field vectors along the galaxy tail derived from the polarization angle.
Fig. 4: Initial time evolution of magnetic field components, B, the vertical velocity, vy, and the gas density, n, in the simulation with a turbulent wind.
Fig. 5: Simulated mock synchrotron observables of a cold (T = 104 K) gas cloud that interacts with a supersonic ICM at four cloud crushing timescales.
Fig. 6: Slices of the temperature distribution overlaid with magnetic field vectors at four cloud crushing timescales.

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request. The JVLA 1.4 GHz data are available in the National Radio Astronomy Observatory (NRAO) archive (https://science.nrao.edu/facilities/vla/archive/index) and can be found via the project numbers stated in the Methods. At the end of this year, the 2.7 GHz data will also be available in the NRAO archive and can also be found via the project numbers stated in the Methods.

Code availability

The code used during data preparation and analysis is public and available from the corresponding author on reasonable request. The Arepo code, which was used for the present simulations, is also publicly available64.

References

  1. 1.

    Schmidt, M. The rate of star formation. Astrophys. J. 129, 243–258 (1959).

    ADS  Article  Google Scholar 

  2. 2.

    Kennicutt, R. C. Jr The star formation law in galactic disks. Astrophys. J. 344, 685–703 (1989).

    ADS  Article  Google Scholar 

  3. 3.

    Cayatte, V., van Gorkom, J. H., Balkowski, C. & Kotanyi, C. VLA observations of neutral hydrogen in Virgo Cluster galaxies. I. The Atlas. Astron. J. 100, 604–634 (1990).

    ADS  Article  Google Scholar 

  4. 4.

    Jaffé, Y. L. et al. BUDHIES II: a phase-space view of H i gas stripping and star formation quenching in cluster galaxies. Mon. Not. R. Astron. Soc. 448, 1715–1728 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    Williams, B. A. & Rood, H. J. Neutral hydrogen in compact groups of galaxies. Astrophys. J. 63, 265–294 (1987).

    ADS  Article  Google Scholar 

  6. 6.

    Serra, P. et al. Discovery of a giant H i tail in the galaxy group HCG 44. Mon. Not. R. Astron. Soc. 428, 370–380 (2013).

    ADS  Article  Google Scholar 

  7. 7.

    Fumagalli, M. et al. MUSE sneaks a peek at extreme ram-pressure stripping events—I. A kinematic study of the archetypal galaxy ESO137-001. Mon. Not. R. Astron. Soc. 445, 4335–4344 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    Poggianti, B. M. et al. GASP XIII. Star formation in gas outside galaxies. Mon. Not. R. Astron. Soc. 482, 4466–4502 (2019).

    ADS  Article  Google Scholar 

  9. 9.

    Vulcani, B. et al. Enhanced star formation in both disks and ram-pressure-stripped tails of GASP jellyfish galaxies. Astrophys. J. 866, L25 (2018).

    ADS  Article  Google Scholar 

  10. 10.

    Crutcher, R. M. Magnetic fields in molecular clouds. Annu. Rev. Astron. Astrophys. 50, 29–63 (2012).

    ADS  Article  Google Scholar 

  11. 11.

    Beck, R. & Wielebinski, R. in Planets, Stars and Stellar Systems. Volume 5: Galactic Structure and Stellar Populations 641–723 (Springer, 2013).

  12. 12.

    Li, H.-B. & Henning, T. The alignment of molecular cloud magnetic fields with the spiral arms in M33. Nature 479, 499–501 (2011).

    ADS  Article  Google Scholar 

  13. 13.

    Beck, R. et al. Magnetic fields in barred galaxies. IV. NGC 1097 and NGC 1365. Astron. Astrophys. 444, 739–765 (2005).

    ADS  Article  Google Scholar 

  14. 14.

    Gavazzi, G. in The Minnesota Lectures on Clusters of Galaxies and Large-Scale Structure 115–142 (ASP, 1988).

  15. 15.

    Gavazzi, G. et al. The radio and optical structure of three peculiar galaxies in A 1367. Astron. Astrophys. 304, 325–340 (1995).

    ADS  Google Scholar 

  16. 16.

    Vollmer, B. et al. The influence of the cluster environment on the large-scale radio continuum emission of 8 Virgo cluster spirals. Astron. Astrophys. 512, A36 (2010).

    Article  Google Scholar 

  17. 17.

    Vollmer, B. et al. Large-scale radio continuum properties of 19 Virgo cluster galaxies. The influence of tidal interactions, ram pressure stripping, and accreting gas envelopes. Astron. Astrophys. 553, A116 (2013).

    Article  Google Scholar 

  18. 18.

    Vijayaraghavan, R. & Ricker, P. M. The co-evolution of a magnetized intracluster medium and hot galactic coronae: magnetic field amplification and turbulence generation. Astrophys. J. 841, 38 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Ramos-Martínez, M., Gómez, G. C. & Pérez-Villegas, A. MHD simulations of ram pressure stripping of a disk galaxy. Mon. Not. R. Astron. Soc. 476, 3781–3792 (2018).

    ADS  Article  Google Scholar 

  20. 20.

    Tonnesen, S. & Stone, J. The ties that bind? Galactic magnetic fields and ram pressure stripping. Astrophys. J. 795, 148 (2014).

    ADS  Article  Google Scholar 

  21. 21.

    Vollmer, B. et al. The characteristic polarized radio continuum distribution of cluster spiral galaxies. Astron. Astrophys. 464, L37–L40 (2007).

    ADS  Article  Google Scholar 

  22. 22.

    Dursi, L. J. & Pfrommer, C. Draping of cluster magnetic fields over bullets and bubbles—morphology and dynamic effects. Astrophys. J. 677, 993–1018 (2008).

    ADS  Article  Google Scholar 

  23. 23.

    Pfrommer, C. & Dursi, L. J. Detecting the orientation of magnetic fields in galaxy clusters. Nat. Phys. 6, 520–526 (2010).

    Article  Google Scholar 

  24. 24.

    Ruszkowski, M., Brüggen, M., Lee, D. & Shin, M.-S. Impact of magnetic fields on ram pressure stripping in disk galaxies. Astrophys. J. 784, 75 (2014).

    ADS  Article  Google Scholar 

  25. 25.

    Berlok, T. & Pfrommer, C. The impact of magnetic fields on cold streams feeding galaxies. Mon. Not. R. Astron. Soc. 489, 3368–3384 (2019).

    ADS  Article  Google Scholar 

  26. 26.

    Ramatsoku, M. et al. GASP—XVII. H i imaging of the jellyfish galaxy JO206: gas stripping and enhanced star formation. Mon. Not. R. Astron. Soc. 487, 4580–4591 (2019).

    ADS  Article  Google Scholar 

  27. 27.

    Poggianti, B. M. et al. GASP. I. Gas stripping phenomena in galaxies with MUSE. Astrophys. J. 844, 48 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Poggianti, B. M. et al. Ram-pressure feeding of supermassive black holes. Nature 548, 304–309 (2017).

    ADS  Article  Google Scholar 

  29. 29.

    Gullieuszik, M. et al. GASP. XXI. Star formation rates in the tails of galaxies undergoing ram-pressure stripping. Astrophys. J. 899, 13 (2020).

    ADS  Article  Google Scholar 

  30. 30.

    Niklas, S., Klein, U. & Wielebinski, R. A radio continuum survey of Shapley-Ames galaxies at λ 2.8 cm. II. Separation of thermal and non-thermal radio emission. Astron. Astrophys. 322, 19–28 (1997).

    ADS  Google Scholar 

  31. 31.

    Liu, R., Pooley, G. & Riley, J. M. Spectral ageing in a sample of 14 high-luminosity double radio sources. Mon. Not. R. Astron. Soc. 257, 545–571 (1992).

    ADS  Article  Google Scholar 

  32. 32.

    Winner, G., Pfrommer, C., Girichidis, P. & Pakmor, R. Evolution of cosmic ray electron spectra in magnetohydrodynamical simulations. Mon. Not. R. Astron. Soc. 488, 2235–2252 (2019).

    ADS  Article  Google Scholar 

  33. 33.

    Chen, H. et al. The ram pressure stripped radio tails of galaxies in the Coma cluster. Mon. Not. R. Astron. Soc. 496, 4654–4673 (2020).

    ADS  Article  Google Scholar 

  34. 34.

    Beck, R. & Krause, M. Revised equipartition and minimum energy formula for magnetic field strength estimates from radio synchrotron observations. Astron. Nachr. 326, 414–427 (2005).

    ADS  Article  Google Scholar 

  35. 35.

    Krause, M. et al. CHANG-ES. IX. Radio scale heights and scale lengths of a consistent sample of 13 spiral galaxies seen edge-on and their correlations. Astron. Astrophys. 611, A72 (2018).

    Article  Google Scholar 

  36. 36.

    Beck, R. Galactic and extragalactic magnetic fields—a concise review. Astrophys. Space Sci. Trans. 5, 43–47 (2009).

    ADS  Article  Google Scholar 

  37. 37.

    Sparre, M., Pfrommer, C. & Ehlert, K. Interaction of a cold cloud with a hot wind: the regimes of cloud growth and destruction and the impact of magnetic fields. Preprint at https://arxiv.org/abs/2008.09118 (2020).

  38. 38.

    Moretti, A. et al. The high molecular gas content, and the efficient conversion of neutral into molecular gas, in jellyfish galaxies. Astrophys. J. Lett. 897, L30 (2020).

    ADS  Article  Google Scholar 

  39. 39.

    Beck, R. Magnetic fields in spiral galaxies. Astron. Astrophys. Rev. 24, 4 (2015).

    ADS  Article  Google Scholar 

  40. 40.

    Stil, J. M., Krause, M., Beck, R. & Taylor, A. R. The integrated polarization of spiral galaxy disks. Astrophys. J. 693, 1392–1403 (2009).

    ADS  Article  Google Scholar 

  41. 41.

    Miley, G. K. Brightness and polarization distributions of head-tail galaxies at 1415 MHz. Astron. Astrophys. 26, 413–421 (1973).

    ADS  Google Scholar 

  42. 42.

    Springel, V. Moving-mesh hydrodynamics with the AREPO code. Proc. Int. Astron. Union 6, 203–206 (2010).

    Article  Google Scholar 

  43. 43.

    Pakmor, R. & Springel, V. Simulations of magnetic fields in isolated disk galaxies. Mon. Not. R. Astron. Soc. 432, 176–193 (2013).

    ADS  Article  Google Scholar 

  44. 44.

    Pakmor, R. et al. Improving the convergence properties of the moving-mesh code AREPO. Mon. Not. R. Astron. Soc. 455, 1134–1143 (2015).

    ADS  Article  Google Scholar 

  45. 45.

    Gronke, M. & Oh, S. P. The growth and entrainment of cold gas in a hot wind. Mon. Not. R. Astron. Soc. 480, L111–L115 (2018).

    ADS  Article  Google Scholar 

  46. 46.

    Li, Z., Hopkins, P. F., Squire, J. & Hummels, C. On the survival of cool clouds in the circumgalactic medium. Mon. Not. R. Astron. Soc. 492, 1841–1854 (2020).

    ADS  Article  Google Scholar 

  47. 47.

    Dursi, L. J. Bubble wrap for bullets: the stability imparted by a thin magnetic layer. Astrophys. J. 670, 221–230 (2007).

    ADS  Article  Google Scholar 

  48. 48.

    Offringa, A. R., van de Gronde, J. J. & Roerdink, J. B. T. M. A morphological algorithm for improving radio-frequency interference detection. Astron. Astrophys. 539, A95 (2012).

    Article  Google Scholar 

  49. 49.

    Perley, R. A. & Butler, B. J. An accurate flux density scale from 1 to 50 GHz. Astrophys. J. Suppl. Ser. 204, 19 (2013).

    ADS  Article  Google Scholar 

  50. 50.

    Perley, R. A. & Butler, B. J. An accurate flux density scale from 50 MHz to 50 GHz. Astrophys. J. Suppl. Ser. 230, 7 (2017).

  51. 51.

    Brentjens, M. A. & de Bruyn, A. G. Faraday rotation measure synthesis. Astron. Astrophys. 441, 1217–1228 (2005).

    ADS  Article  Google Scholar 

  52. 52.

    Wardle, J. F. C. & Kronberg, P. P. The linear polarization of quasi-stellar radio sources at 3.71 and 11.1 centimeters. Astrophys. J. 194, 249–255 (1974).

    ADS  Article  Google Scholar 

  53. 53.

    Heald, G., Braun, R. & Edmonds, R. The Westerbork SINGS survey. II Polarization, Faraday rotation, and magnetic fields. Astron. Astrophys. 503, 409–435 (2009).

    ADS  Article  Google Scholar 

  54. 54.

    Adebahr, B., Krause, M., Klein, U., Heald, G. & Dettmar, R.-J. M 82—A radio continuum and polarisation study. II. Polarisation and rotation measures. Astron. Astrophys. 608, A29 (2017).

    ADS  Article  Google Scholar 

  55. 55.

    Gurvich, A. B. et al. Pressure balance in the multiphase ISM of cosmologically simulated disk galaxies. Mon. Not. R. Astron. Soc. 498, 3664–3683 (2020).

    ADS  Article  Google Scholar 

  56. 56.

    Powell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I. & De Zeeuw, D. L. A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154, 284–309 (1999).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  57. 57.

    Scannapieco, E. & Brüggen, M. The launching of cold clouds by galaxy outflows. I. Hydrodynamic interactions with radiative cooling. Astrophys. J. 805, 158 (2015).

    ADS  Article  Google Scholar 

  58. 58.

    Schneider, E. E. & Robertson, B. E. Hydrodynamical coupling of mass and momentum in multiphase galactic winds. Astrophys. J. 834, 144 (2017).

    ADS  Article  Google Scholar 

  59. 59.

    McCourt, M., O’Leary, R. M., Madigan, A.-M. & Quataert, E. Magnetized gas clouds can survive acceleration by a hot wind. Mon. Not. R. Astron. Soc. 449, 2–7 (2015).

    ADS  Article  Google Scholar 

  60. 60.

    Ehlert, K., Weinberger, R., Pfrommer, C., Pakmor, R. & Springel, V. Simulations of the dynamics of magnetized jets and cosmic rays in galaxy clusters. Mon. Not. R. Astron. Soc. 481, 2878–2900 (2018).

    ADS  Article  Google Scholar 

  61. 61.

    Vogelsberger, M. et al. A model for cosmological simulations of galaxy formation physics. Mon. Not. R. Astron. Soc. 436, 3031–3067 (2013).

    ADS  Article  Google Scholar 

  62. 62.

    Condon, J. J. Radio emission from normal galaxies. Annu. Rev. Astron. Astrophys. 30, 575–611 (1992).

    ADS  Article  Google Scholar 

  63. 63.

    Kaiser, C. R. The flat synchrotron spectra of partially self-absorbed jets revisited. Mon. Not. R. Astron. Soc. 367, 1083–1094 (2006).

    ADS  Article  Google Scholar 

  64. 64.

    Weinberger, R., Springel, V. & Pakmor, R. The AREPO public code release. Astrophys. J. 248, 32 (2020).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work is based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere under ESO programme 196.B-0578. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements 833824 and 679627). We acknowledge funding from the INAF mainstream funding programme (principal investigator B.V.) and from the agreement ASI-INAF n.2017-14-H.0. B.V. acknowledges the Italian PRIN-Miur 2017 (principal investigator A. Cimatti). C.P. acknowledges support by the ERC under ERC-CoG grant CRAGSMAN-646955.

Author information

Affiliations

Authors

Contributions

A. Müller carried out the imaging and analysis of the 2.7 GHz data as well as its interpretation, contributed to the comparison of the radio and optical data, and coordinated the research. B.P. provided the data from the Multi Unit Spectroscopic Explorer (MUSE), an integral field spectrograph, used in this paper and the measurements of the SFRD, contributed to the comparison of the radio and optical data and its interpretation. A. Müller, B.P. and C.P. contributed to the text of the manuscript. C.P. contributed to the various magnetic field estimates and M.S. ran the simulations; M.S. and C.P. contributed to the analysis code, the synchrotron modelling and the interpretation of the simulations. P.S. carried out the 1.4 GHz data reduction and contributed to the interpretation of the results. B.A. contributed to the 2.7 GHz data reduction and its interpretation. A.I. and M.G. carried out the analysis of the archival Chandra X-ray observation to asses the thermal properties of the cluster. R.-J.D. contributed to the scientific discussion. B.V. and A. Moretti contributed to the MUSE data acquisition and analysis, and the interpretation of the results.

Corresponding author

Correspondence to Ancla Müller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Rüdiger Pakmor and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Results and Discussion, and Tables 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Müller, A., Poggianti, B.M., Pfrommer, C. et al. Highly ordered magnetic fields in the tail of the jellyfish galaxy JO206. Nat Astron (2020). https://doi.org/10.1038/s41550-020-01234-7

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing