Dust/ice mixing in cold regions and solid-state water in the diffuse interstellar medium

Abstract

Whether ice in cold cosmic environments is physically separated from the silicate dust or mixed with individual silicate moieties is not known. However, different grain models give very different compositions and temperatures of grains. The aim of the present study is to compare the mid-infrared spectra of laboratory silicate grain/water ice mixtures with astronomical observations to evaluate the presence of dust/ice mixtures in interstellar and circumstellar environments. The laboratory data can explain the observations, assuming reasonable mass-averaged temperatures for the protostellar envelopes and protoplanetary disks, demonstrating that a substantial fraction of water ice may be mixed with silicate grains. On the basis of the combination of laboratory data and infrared observations, we provide evidence of the presence of solid-state water in the diffuse interstellar medium. Our results have implications for future laboratory studies investigating cosmic dust grain analogues and for future observations trying to identify the structure, composition and temperature of grains in different astrophysical environments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Laboratory spectra.
Fig. 2: Comparisons between our laboratory measurements and the observational spectra of protostars.
Fig. 3: Comparisons between our laboratory measurements and the observational spectrum of d216–0939.
Fig. 4: Comparisons between our laboratory measurements and the derived apparent optical depth toward Cyg OB2 12.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Dorschner, J. & Henning, T. Dust metamorphosis in the Galaxy. Astron. Astrophys. Rev. 6, 271–333 (1995).

    ADS  Google Scholar 

  2. 2.

    Draine, B. T. Interstellar dust grains. Annu. Rev. Astron. Astrophys. 41, 241–289 (2003).

    ADS  Google Scholar 

  3. 3.

    Whittet, D. C. B. Dust in the Galactic Environment (IOP Publishing, 2003).

  4. 4.

    Ciaravella, A. et al. Chemical evolution of interstellar methanol ice analogs upon ultraviolet irradiation: the role of the substrate. Astrophys. J. 858, 35 (2018).

    ADS  Google Scholar 

  5. 5.

    Potapov, A., Jäger, C., Henning, T., Jonusas, M. & Krim, L. The formation of formaldehyde on interstellar carbonaceous grain analogs by O/H atom addition. Astrophys. J. 846, 131 (2017).

    ADS  Google Scholar 

  6. 6.

    Potapov, A., Jäger, C. & Henning, T. Photodesorption of water ice from dust grains and thermal desorption of cometary ices studied by the INSIDE experiment. Astrophys. J. 880, 12 (2019).

    ADS  Google Scholar 

  7. 7.

    Potapov, A., Theule, P., Jäger, C. & Henning, T. Evidence of surface catalytic effect on cosmic dust grain analogues: the ammonia and carbon dioxide surface reaction. Astrophys. J. Lett. 878, L20 (2019).

    ADS  Google Scholar 

  8. 8.

    Suhasaria, T., Thrower, J. D. & Zacharias, H. Thermal desorption of astrophysically relevant molecules from forsterite(010). Mon. Not. R. Astron. Soc. 472, 389–399 (2017).

    ADS  Google Scholar 

  9. 9.

    Rosu-Finsen, A. & McCoustra, M. R. S. Impact of oxygen chemistry on model interstellar grain surfaces. Phys. Chem. Chem. Phys. 20, 5368–5376 (2018).

    Google Scholar 

  10. 10.

    Potapov, A., Jäger, C. & Henning, T. Temperature programmed desorption of water ice from the surface of amorphous carbon and silicate grains as related to planet-forming disks. Astrophys. J. 865, 58 (2018).

    ADS  Google Scholar 

  11. 11.

    Potapov, A., Mutschke, H., Seeber, P., Henning, T. & Jäger, C. Low-temperature optical properties of interstellar and circumstellar icy silicate grain analogs in the mid-infrared spectral region. Astrophys. J. 861, 84 (2018).

    ADS  Google Scholar 

  12. 12.

    Potapov, A., Jäger, C. & Henning, T. Ice coverage of dust grains in cold astrophysical environments. Phys. Rev. Lett. 124, 221103 (2020).

    ADS  Google Scholar 

  13. 13.

    Brownlee, D. et al. Comet 81P/Wild 2 under a microscope. Science 314, 1711–1716 (2006).

    ADS  Google Scholar 

  14. 14.

    Fulle, M. et al. The dust-to-ices ratio in comets and Kuiper belt objects. Mon. Not. R. Astron. Soc. 469, S45–S49 (2017).

    Google Scholar 

  15. 15.

    A’Hearn, M. F. Comets as building blocks. Annu. Rev. Astron. Astrophys. 49, 281–299 (2011).

    ADS  Google Scholar 

  16. 16.

    van Dishoeck, E. F. Astrochemistry of dust, ice and gas: introduction and overview. Faraday Discuss. 168, 9–47 (2014).

    ADS  Google Scholar 

  17. 17.

    Harmon, J. K. et al. Radar detection of the nucleus and coma of comet Hyakutake (C/1996 B2). Science 278, 1921–1924 (1997).

    ADS  Google Scholar 

  18. 18.

    Hörz, F. et al. Impact features on Stardust: implications for comet 81P/Wild 2 dust. Science 314, 1716–1719 (2006).

    ADS  Google Scholar 

  19. 19.

    Fulle, M., Levasseur-Regourd, A. C., McBride, N. & Hadamcik, E. In situ dust measurements from within the coma of 1P/Halley: first-order approximation with a dust dynamical model. Astron. J. 119, 1968–1977 (2000).

    ADS  Google Scholar 

  20. 20.

    Fulle, M. & Blum, J. Fractal dust constrains the collisional history of comets. Mon. Not. R. Astron. Soc. 469, S39–S44 (2017).

    ADS  Google Scholar 

  21. 21.

    Kataoka, A., Tanaka, H., Okuzumi, S. & Wada, K. Fluffy dust forms icy planetesimals by static compression. Astron. Astrophys. 557, L4 (2013).

    ADS  Google Scholar 

  22. 22.

    Ossenkopf, V. Dust coagulation in dense molecular clouds—the formation of fluffy aggregates. Astron. Astrophys. 280, 617–646 (1993).

    ADS  Google Scholar 

  23. 23.

    Tazaki, R., Tanaka, H., Okuzumi, S., Kataoka, A. & Nomura, H. Light scattering by fractal dust aggregates. I. Angular dependence of scattering. Astrophys. J. 823, 70 (2016).

  24. 24.

    Wurm, G. & Blum, J. Experiments on preplanetary dust aggregation. Icarus 132, 125–136 (1998).

    ADS  Google Scholar 

  25. 25.

    Krause, M. & Blum, J. Growth and form of planetary seedlings: results from a sounding rocket microgravity aggregation experiment. Phys. Rev. Lett. 93, 021103 (2004).

    ADS  Google Scholar 

  26. 26.

    Jäger, C., Mutschke, H., Henning, T. & Huisken, F. Spectral properties of gas-phase condensed fullerene-like carbon nanoparticles from far-ultraviolet to infrared wavelengths. Astrophys. J. 689, 249–259 (2008).

    ADS  Google Scholar 

  27. 27.

    Sabri, T. et al. Interstellar silicate analogs for grain-surface reaction experiments: gas-phase condensation and characterization of the silicate dust grains. Astrophys. J. 780, 180 (2014).

  28. 28.

    Knacke, R. F. & Krätschmer, W. Infrared spectra of hydrated silicates, carbonaceous chondrites, and amorphous carbonates compared with interstellar dust absorptions. Astron. Astrophys. 92, 281–288 (1980).

    ADS  Google Scholar 

  29. 29.

    Che, C. C., Glotch, T. D., Bish, D. L., Michalski, J. R. & Xu, W. Q. Spectroscopic study of the dehydration and/or dehydroxylation of phyllosilicate and zeolite minerals. J. Geophys. Res. Planets 116, E05007 (2011).

    ADS  Google Scholar 

  30. 30.

    Stimpfl, M., Walker, A. M., Drake, M. J., de Leeuw, N. H. & Deymier, P. An ångström-sized window on the origin of water in the inner Solar System: atomistic simulation of adsorption of water on olivine. J. Cryst. Growth 294, 83–95 (2006).

    ADS  Google Scholar 

  31. 31.

    Muralidharan, K., Deymier, P., Stimpfl, M., de Leeuw, N. H. & Drake, M. J. Origin of water in the inner Solar System: a kinetic Monte Carlo study of water adsorption on forsterite. Icarus 198, 400–407 (2008).

    ADS  Google Scholar 

  32. 32.

    Gibb, E. L., Whittet, D. C. B., Boogert, A. C. A. & Tielens, A. G. G. M. Interstellar ice: the Infrared Space Observatory legacy. Astrophys. J. Suppl. Ser. 151, 35–73 (2004).

    ADS  Google Scholar 

  33. 33.

    Terada, H. & Tokunaga, A. T. Discovery of crystallized water ice in a silhouette disk in the M43 region. Astrophys. J. 753, 19 (2012).

    ADS  Google Scholar 

  34. 34.

    Boogert, A. C. A., Gerakines, P. A. & Whittet, D. C. B. Observations of the icy universe. Annu. Rev. Astron. Astrophys. 53, 541–581 (2015).

    ADS  Google Scholar 

  35. 35.

    Oba, Y. et al. Formation of compact amorphous H2O ice by codeposition of hydrogen atoms with oxygen molecules on grain surfaces. Astrophys. J. 701, 464–470 (2009).

    ADS  Google Scholar 

  36. 36.

    Fogerty, S., Forrest, W., Watson, D. M., Sargent, B. A. & Koch, I. Silicate composition of the interstellar medium. Astrophys. J. 830, 71 (2016).

    ADS  Google Scholar 

  37. 37.

    Cazaux, S., Cobut, V., Marseille, M., Spaans, M. & Caselli, P. Water formation on bare grains: when the chemistry on dust impacts interstellar gas. Astron. Astrophys. 522, A74 (2010).

    ADS  Google Scholar 

  38. 38.

    Cuppen, H. M. & Herbst, E. Simulation of the formation and morphology of ice mantles on interstellar grains. Astrophys. J. 668, 294–309 (2007).

    ADS  Google Scholar 

  39. 39.

    Jones, A. P. Variations on a theme—the evolution of hydrocarbon solids. I. Compositional and spectral modelling—the eRCN and DG models. Astron. Astrophys. 540, A1 (2012).

    ADS  Google Scholar 

  40. 40.

    Whittet, D. C. B. et al. Infrared spectroscopy of dust in the diffuse interstellar medium toward Cygnus OB2 no. 12. Astrophys. J. 490, 729–734 (1997).

    ADS  Google Scholar 

  41. 41.

    Casu, S., Scappini, F., Cecchi-Pestellini, C. & Olberg, M. The diffuse clouds towards Cyg OB2 no. 5 and no. 12. Mon. Not. R. Astron. Soc. 359, 73–78 (2005).

    ADS  Google Scholar 

  42. 42.

    Whittet, D. C. B. et al. The abundance of carbon dioxide ice in the quiescent intracloud medium. Astrophys. J. 655, 332–341 (2007).

    ADS  Google Scholar 

  43. 43.

    Munoz Caro, G. M. & Schutte, W. A. UV-photoprocessing of interstellar ice analogs: new infrared spectroscopic results. Astron. Astrophys. 412, 121–132 (2003).

    ADS  Google Scholar 

  44. 44.

    Hensley, B. S. & Draine, B. T. Detection of PAH absorption and determination of the mid-infrared diffuse interstellar extinction curve from the sightline toward Cyg OB2-12. Astrophys. J. 895, 38 (2020).

    ADS  Google Scholar 

  45. 45.

    Ardila, D. R. et al. The Spitzer Atlas of Stellar Spectra (SASS). Astrophys. J. Suppl. Ser. 191, 301–339 (2010).

    ADS  Google Scholar 

  46. 46.

    Sloan, G. C., Kraemer, K. E., Price, S. D. & Shipman, R. F. A uniform database of 2.4–45.4 micron spectra from the Infrared Space Observatory Short Wavelength Spectrometer. Astrophys. J. Suppl. Ser. 147, 379–401 (2003).

    ADS  Google Scholar 

  47. 47.

    van Dishoeck, E. F., Bergin, E. A., Lis, D. C. & Lunine, J. I. Water: from clouds to planets. Preprint at https://arxiv.org/abs/1401.8103 (2014).

  48. 48.

    Jenkins, E. B. A unified representation of gas-phase element depletions in the interstellar medium. Astrophys. J. 700, 1299–1348 (2009).

    ADS  Google Scholar 

  49. 49.

    Poteet, C. A., Whittet, D. C. B. & Draine, B. T. The composition of interstellar grains toward ζ Ophiuchi: constraining the elemental budget near the diffuse-dense cloud transition. Astrophys. J. 801, 110 (2015).

    ADS  Google Scholar 

  50. 50.

    Draine, B. T. Perspectives on interstellar dust inside and outside of the heliosphere. Space Sci. Rev. 143, 333–345 (2009).

    ADS  Google Scholar 

  51. 51.

    Wada, K., Tanaka, H., Suyama, T., Kimura, H. & Yamamoto, T. Collisional growth conditions for dust aggregates. Astrophys. J. 702, 1490–1501 (2009).

    ADS  Google Scholar 

  52. 52.

    Wettlaufer, J. S. Accretion in protoplanetary disks by collisional fusion. Astrophys. J. 719, 540–549 (2010).

    ADS  Google Scholar 

  53. 53.

    Gundlach, B. & Blum, J. The stickiness of micrometer-sized water-ice particles. Astrophys. J. 798, 34 (2015).

    ADS  Google Scholar 

  54. 54.

    Thiel, V., Belloche, A., Menten, K. M., Garrod, T. & Muller, H. S. P. Complex organic molecules in diffuse clouds along the line of sight to Sagittarius B2. Astron. Astrophys. 605, L6 (2017).

    ADS  Google Scholar 

  55. 55.

    Liszt, H., Gerin, M., Beasley, A. & Pety, J. Chemical complexity in local diffuse and translucent clouds: ubiquitous linear C3H and CH3CN, a detection of HC3N and an upper limit on the abundance of CH2CN. Astrophys. J. 856, 151 (2018).

    ADS  Google Scholar 

  56. 56.

    Hudgins, D. M., Sandford, S. A., Allamandola, L. J. & Tielens, A. G. G. M. Mid- and far-infrared spectroscopy of ices—optical constants and integrated absorbances. Astrophys. J. Suppl. Ser. 86, 713–870 (1993).

    ADS  Google Scholar 

  57. 57.

    Narten, A. H., Venkatesht, C. G. & Rice, S. A. Diffraction pattern and structure of amorphous solid water at 10 and 77 °K. J. Chem. Phys. 64, 1106–1121 (1976).

    ADS  Google Scholar 

  58. 58.

    Houck, J. R. et al. The Infrared Spectrograph (IRS) on the Spitzer Space Telescope. Astrophys. J. Suppl. Ser. 154, 18–24 (2004).

    ADS  Google Scholar 

  59. 59.

    Lahuis, F. et al. c2d Spitzer IRS spectra of disks around T Tauri stars. III. [Ne ii], [Fe i], and H2 gas-phase lines. Astrophys. J. 665, 492–511 (2007).

    ADS  Google Scholar 

  60. 60.

    Bouwman, J. et al. The Formation and Evolution of Planetary Systems: grain growth and chemical processing of dust in T Tauri systems. Astrophys. J. 683, 479–498 (2008).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank E. Gibb and H. Terada for providing the observational data. This work was supported by the Research Unit FOR 2285 ‘Debris Disks in Planetary Systems’ of the Deutsche Forschungsgemeinschaft (grant JA 2107/3–2). T.H. acknowledges support from the European Research Council under the Horizon 2020 Framework Programme via the ERC Advanced Grant Origins 83 24 28.

Author information

Affiliations

Authors

Contributions

A.P. led the project. A.P. and J.B. designed the research and wrote the paper. A.P. performed the laboratory experiments. J.B. performed the analysis of the observational data. C.J. and T.H. participated in data interpretation and discussion.

Corresponding author

Correspondence to Alexey Potapov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Herma Cuppen, Erika Gibb and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The normalized 150 K spectra of the silicate/ice mixtures.

MgSiO3/H2O 7.5, Mg2SiO4/H2O 10.5, and MgFeSiO4/H2O 9.0 samples (left) and the MgSiO3/H2O samples with the mass ratios of 2.7 and 7.5 (right).

Extended Data Fig. 2 Amount of trapped water.

Dependence of the volume percentage of remaining water in the silicate/H2O samples at 200 K on the silicate/H2O mass ratio.

Extended Data Fig. 3 ISO-SWS observations of Cyg OB2 12.

The top panel shows the three ISO observations of Cyg OB 2 12 (TDT 33504130, 03602226, and 13901048). The two lower spectra are offset by 5, respectively 10 Jy for clarity. Also, show in this panel are the fitted polynomial continua for the three observations. The lower panel shows the derived optical depth for the three observations (gray curves) and the re-binned average (black curve).

Extended Data Fig. 4 Spitzer IRS observations of Cyg OB2 12.

The top panel shows the data taken in the 3 spectral orders of the short-wavelength module of the low-resolution spectrograph (green, red and blue data points) the short-wavelength module of the high-resolution spectrograph (magenta data points) and the second order of the long-wavelength module of the low-resolution spectrograph (brown data points). Also plotted in his panel is the fitted power-law continuum (black dashed line). The inset figure shows a zoom of the spectral region between 7 and 8 microns. The grey shaded area indicates the position of a blend of HI emission lines. The lower panel shows the derived apparent optical depth profile. The inset panel shows a zoom of the 5.5 to 8 microns spectral region. All plotted error bars represent a 1-sigma uncertainty limit.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Potapov, A., Bouwman, J., Jäger, C. et al. Dust/ice mixing in cold regions and solid-state water in the diffuse interstellar medium. Nat Astron (2020). https://doi.org/10.1038/s41550-020-01214-x

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing